# Structural Calculations 

For

# Ramaiyah Residence 7466 E Mercer Way, Mercer Island, WA 98040 

March 11, 2024


Prepared by
Brian Lampe
Mariam Soliman

## STRUCTURAL CALCULATIONS SHEET INDEX <br> Project Name <br> Project Address

## Item

Page \#

## Criteria

- Design Criteria.............................................................................................................C1.1

Gravity

- Roof Framing
$\checkmark$ Key Plans .......................................................................................................R1.1
$\checkmark$ Beams.
.R2.1
- Upper Floor Framing

$\checkmark$ Key Plans

.U1.1
$\checkmark$ Beams ...........................................................................................................U2.1

- Main Floor Framing
$\checkmark$ Key Plans
MF1.1
$\checkmark$ Beams ....................................................................................................................................................


## Lateral

- Forces
$\checkmark$ Criteria........................................................................................................ L1.1
$\checkmark$ Building Geometry ...................................................................................... L1.2
$\checkmark$ Seismic Parameters ....................................................................................L1.3
$\checkmark$ Wind Lateral Loads....................................................................................... L1.4
$\checkmark$ Vertical Distribution of Lateral Forces........................................................... L1.5
- Shear Walls/Diaphragms
$\checkmark$ Roof Diaphragm Forces/ Upper Floor Diaphragm Forces .......................... L2.1
$\checkmark$ Shear Wall Forces ......................................................................................... L2.2
$\checkmark$ Shear Wall Analysis.................................................................................... L2.3
- Shear Wall/Diaphragm Capacities
$\checkmark$ Allowable Diaphragm Stresses.................................................................... L3.1
$\checkmark$ Allowable Shear Wall Stresses..................................................................... L3.2
$\checkmark$ Shear Wall Anchor Bolts .............................................................................. L3.3
$\checkmark$ Shear Wall Schedule .................................................................................... L3.4
Miscellaneous
- Stud Wall Design......................................................................................................... M1.1
- Post Design ................................................................................................................. M1.3
- Footing Design ........................................................................................................... M2. 1

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

Criteria


## King County iMap



## 7466 E Mercer Way, Mercer Island, WA 98040, USA

## Latitude, Longitude: 47.5348884, -122.2140168



| Type | Value | Description |
| :---: | :---: | :---: |
| $\mathrm{S}_{\mathrm{S}}$ | 1.454 | $M C E_{R}$ ground motion. (for 0.2 second period) |
| $\mathrm{S}_{1}$ | 0.502 | $M C E_{R}$ ground motion. (for 1.0 s period) |
| $\mathrm{S}_{\text {MS }}$ | 1.454 | Site-modified spectral acceleration value |
| $\mathrm{S}_{\mathrm{M} 1}$ | null -See Section 11.4.8 | Site-modified spectral acceleration value |
| $S_{\text {DS }}$ | 0.969 | Numeric seismic design value at 0.2 second SA |
| $\mathrm{S}_{\mathrm{D} 1}$ | null -See Section 11.4.8 | Numeric seismic design value at 1.0 second SA |


| Type | Value | Description |
| :---: | :---: | :---: |
| SDC | null -See Section 11.4.8 | Seismic design category |
| $\mathrm{F}_{\mathrm{a}}$ | 1 | Site amplification factor at 0.2 second |
| $\mathrm{F}_{\mathrm{v}}$ | null -See Section 11.4.8 | Site amplification factor at 1.0 second |
| PGA | 0.622 | $\mathrm{MCE}_{\mathrm{G}}$ peak ground acceleration |
| $\mathrm{F}_{\mathrm{PGA}}$ | 1.1 | Site amplification factor at PGA |
| $\mathrm{PGA}_{M}$ | 0.684 | Site modified peak ground acceleration |
| $\mathrm{T}_{\mathrm{L}}$ | 6 | Long-period transition period in seconds |
| SsRT | 1.454 | Probabilistic risk-targeted ground motion. ( 0.2 second) |
| SsUH | 1.612 | Factored uniform-hazard (2\% probability of exceedance in 50 years) spectral acceleration |
| SsD | 4.313 | Factored deterministic acceleration value. ( 0.2 second) |
| S1RT | 0.502 | Probabilistic risk-targeted ground motion. (1.0 second) |
| S1UH | 0.559 | Factored uniform-hazard (2\% probability of exceedance in 50 years) spectral acceleration. |
| S1D | 1.639 | Factored deterministic acceleration value. (1.0 second) |
| PGAd | 1.424 | Factored deterministic acceleration value. (Peak Ground Acceleration) |
| PGA ${ }_{\text {UH }}$ | 0.622 | Uniform-hazard (2\% probability of exceedance in 50 years) Peak Ground Acceleration |
| $\mathrm{C}_{\text {RS }}$ | 0.902 | Mapped value of the risk coefficient at short periods |
| $\mathrm{C}_{\mathrm{R} 1}$ | 0.898 | Mapped value of the risk coefficient at a period of 1 s |
| $\mathrm{C}_{\mathrm{V}}$ | 1.391 | Vertical coefficient |



19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## Gravity



ROOF, RJ-01
1 piece(s) 11 7/8" TJI® 210 @ 24" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $1285 @ 18^{\prime} 31 / 4^{\prime \prime}$ | $2952\left(5.255^{\prime \prime}\right)$ | Passed (44\%) | 1.15 | 1.0 D + 1.0 S (Adj Spans) |
| Shear (lbs) | $720 @ 18^{\prime} 1 / 2^{\prime \prime}$ | 1903 | Passed (38\%) | 1.15 | 1.0 D + 1.0 S (Adj Spans) |
| Moment (Ft-lbs) | $-1943 @ 18^{\prime} 31 / 4^{\prime \prime}$ | 4364 | Passed (45\%) | 1.15 | 1.0 D + 1.0 S (Adj Spans) |
| Live Load Defl. (in) | $0.191 @ 9^{\prime} 43 / 8^{\prime \prime}$ | 0.552 | Passed (L/999+) | -- | 1.0 D + 1.0 S (Alt Spans) |
| Total Load Defl. (in) | $0.300 @ 9 ' 41 / 8^{\prime \prime}$ | 0.828 | Passed (L/662) | -- | 1.0 D + 1.0 S (Alt Spans) |

Member Length : 31' $13 / 16^{\prime \prime}$ System: Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 360)$ and $T L(2 L / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Snow | Factored | Accessories |
| 1 - Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | 260 | 438 | 698 | Blocking |
| 2 - Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | 468 | 817 | 1285 | None |
| 3 - Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | 203 | 404 | 607 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $5^{\prime} 5^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $5^{\prime} 3^{\prime \prime} \circ / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $31^{\prime}$ | $24 "$ | 15.0 | 25.0 | ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

ROOF, RJ-02
2 piece(s) 11 7/8" TJI® $210 @ 24 " O C$


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 868 @ 23' $61 / 8{ }^{\prime \prime}$ | 2312 (1.75") | Passed (38\%) | 1.15 | 1.0 D + 1.0 S (Alt Spans) |
| Shear (lbs) | 868 @ 23' $61 / 8{ }^{\prime \prime}$ | 3807 | Passed (23\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Moment (Ft-lbs) | 4705 @ 12' 8" | 8729 | Passed (54\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Live Load Defl. (in) | 0.426 @ 12' 7 9/16" | 0.727 | Passed (L/614) | -- | 1.0 D + 1.0 S (Alt Spans) |
| Total Load Defl. (in) | 0.680 @ 12' 7 5/8" | 1.090 | Passed (L/385) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |

Member Length : $23^{\prime} 67 / 8^{\prime \prime}$ System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1-Beveled Plate - SPF | 5.50" | 5.50" | 3.50" | 381 | 634 | 1015 | Blocking |
| 2 - Hanger on $117 / 8{ }^{\text {" PSL beam }}$ | 5.25" | Hanger ${ }^{1}$ | 1.75" / - 2 | 338 | 565 | 903 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $4^{\prime} 9 "$ o/c |  |
| Bottom Edge (Lu) | $8^{\prime} 8^{\prime \prime}$ o/c |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 2 - Face Mount Hanger | HU4.28/9x SLD2 | 2.50 | N/A | 18-10dx1.5 | 8-10d | Web Stiffeners |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Snow <br> $\mathbf{( 1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $23^{\prime} 113 / 8^{\prime \prime}$ | $24^{\prime \prime}$ | 15.0 | 25.0 | ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ROOF, RJ-03
1 piece(s) 11 7/8"TJI® 210 @ 24" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $529 @ 51 / 4^{\prime \prime}$ | $1156\left(1.75^{\prime \prime}\right)$ | Passed (46\%) | 1.15 | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |
| Shear (lbs) | $568 @ 14^{\prime} 33 / 4^{\prime \prime}$ | 1903 | Passed (30\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Moment (Ft-lbs) | $1751 @ 77^{\prime} 5 / 8^{\prime \prime}$ | 4364 | Passed (40\%) | 1.15 | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |
| Live Load Defl. (in) | $0.149 @ 7^{\prime} 47 / 16^{\prime \prime}$ | 0.471 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |
| Total Load Defl. (in) | $0.229 @ 77^{\prime} 37 / 8^{\prime \prime}$ | 0.706 | Passed (L/740) | -- | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |

Member Length : $18^{\prime} 4$ 11/16"
System : Roof
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1 - Hanger on 11 7/8" PSL beam | 5.25" | Hanger ${ }^{1}$ | 1.75" / - ${ }^{2}$ | 206 | 359 | 564 | See note ${ }^{1}$ |
| 2 - Beveled Plate - SPF | 5.50" | 5.50" | 3.50 " | 358 | 596 | 954 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $5^{\prime} 7 " \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $8^{\prime} 8 " \circ / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | LSSR2.1Z | 1.88 | N/A | $14-10 \mathrm{dx} 2.5$ | $12-10 \mathrm{dx1.5}$ | Web Stiffeners |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Snow <br> $\mathbf{( 1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $18^{\prime} 91 / 4^{\prime \prime}$ | $24^{\prime \prime}$ | 15.0 | 25.0 | ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ROOF, RIM
1 piece(s) 1 3/4" $\times 11$ 7/8" $1.55 E$ TimberStrand $®$ LSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 15' 6 3/4' <br> System : Roof <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology: ASD <br> Member Pitch : 0/12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 673 @ 1 3/4" | 2363 (1.50") | Passed (28\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |  |
| Shear (lbs) | 587 @ 1' 1 5/8" | 4939 | Passed (12\%) | 1.15 | 1.0 D + 1.0 S (All Spans) |  |  |
| Moment (Ft-lbs) | 2618 @ 7' 11 1/8" | 9173 | Passed (29\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |  |
| Live Load Defl. (in) | 0.185 @ 7' 11 1/8" | 0.778 | Passed (L/999+) | -- | 1.0 D + 1.0 S (All Spans) |  |  |
| Total Load Defl. (in) | 0.320 @ 7' 11 1/8" | 1.038 | Passed (L/583) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |  |

- Deflection criteria: LL (L/240) and TL (L/180).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1- Hanger on 117/8" LSL beam | $1.75^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 288 | 396 | 685 | See note ${ }^{1}$ |
| 2- Hanger on $117 / 8^{\prime \prime}$ SPF beam | $3.50^{\prime \prime}$ | Hanger $^{1}$ | $1.500^{\prime \prime}$ | 293 | 404 | 696 | See note $^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $14^{\prime} 2 " \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $15^{\prime} 7{ }^{\prime \prime} \circ / \mathrm{c}$ |  |

$\bullet$ Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 1 - Face Mount Hanger | IUS1.81/9.5 | $2.00^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | $8-10 \mathrm{dx1.5}$ | $2-10 \mathrm{dx1.5}$ |  |  |
| 2 - Face Mount Hanger | IUS1.81/9.5 | 2.00 | $\mathrm{~N} / \mathrm{A}$ | $8-10 \mathrm{dx1.5}$ | $2-10 \mathrm{dx1.5}$ |  |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | $13 / 4^{\prime \prime}$ to $15^{\prime} 81 / 2^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | 6.5 | -- |  |
| 1 - Uniform (PSF) | 0 to $16^{\prime}$ (Front) | $2^{\prime}$ | 15.0 | 25.0 | ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ROOF, RJ-04
2 piece(s) 11 7/8" TJI® $210 @ 24 " O C$


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $1709 @ 26^{\prime} 91 / 4^{\prime \prime}$ | $5905\left(5.255^{\prime \prime}\right)$ | Passed (29\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Adj Spans) |
| Shear (lbs) | $1017 @ 27^{\prime}$ | 3807 | Passed (27\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Moment (Ft-lbs) | $-3663 @ 26^{\prime} 91 / 4^{\prime \prime}$ | 8729 | Passed (42\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Live Load Defl. (in) | $0.130 @ 31^{\prime}$ | 0.282 | Passed (2L/782) | -- | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |
| Total Load Defl. (in) | $0.216 @ 31^{\prime}$ | 0.423 | Passed (2L/470) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~S} \mathrm{(Alt} \mathrm{Spans)}$ |

Member Length : 31' $13 / 16^{\prime \prime}$ System: Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0.5/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 L / 360)$ and $T L(2 L / 240)$.
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1- Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50 "$ | 273 | 455 | 728 | Blocking |
| 2 - Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50 "$ | 285 | 691 | 976 | None |
| 3- Beveled Plate - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50 "$ | 666 | 1043 | 1709 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $7^{\prime} 4^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $5^{\prime} 5^{\prime \prime} \circ / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location | Spacing | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Snow <br> (1.15) | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1- Uniform (PSF) | 0 to 31' | $24^{\prime \prime}$ | 15.0 | 25.0 | ROOF |
| 2- Point (lb) | $31^{\prime}$ | N/A | 293 | 404 | Linked from: RIM, <br> Support 2 |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Brian Lampe |  |
| BTL Engineering |  |
| (425) 814-8448 |  |
| brian.lampe@btleng.net |  |



Project: RAMAIYAH RESIDENCE Designed By: BTL Date: $\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: R2.6


## Project: RAMAIYAH RESIDENCE

$\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page:

Gravity


PASSED
UPPER FLOOR, UJ-01
1 piece(s) 11 7/8" TJI ® 210 @ 16" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $647 @ 16^{\prime} 61 / 2^{\prime \prime}$ | $1005\left(1.75^{\prime \prime}\right)$ | Passed (64\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | $647 @ 16^{\prime} 61 / 2^{\prime \prime}$ | 1655 | Passed (39\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Moment (Ft-lbs) | $2614 @ 8^{\prime} 51 / 2^{\prime \prime}$ | 3795 | Passed (69\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.227 @ 8^{\prime} 51 / 2^{\prime \prime}$ | 0.404 | Passed (L/855) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Total Load Defl. (in) | $0.340 @ 8^{\prime} 51 / 2^{\prime \prime}$ | 0.808 | Passed (L/570) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| TJ-Pro ${ }^{\text {TM }}$ Rating | 55 | 50 | Passed | -- | -- |

Member Length : 16' 5 1/4" System : Floor
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $11 / 8^{\prime \prime}$ Panel ( 48 " Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: $5 / 8^{\text {" Gypsum ceiling. }}$

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $4.25^{\prime \prime}$ | $1.75^{\prime \prime}$ | 226 | 451 | 677 | $11 / 4^{\prime \prime}$ Rim Board |
| 2 - Hanger on $117 / 8^{\prime \prime}$ SPF beam | $5.50^{\prime \prime}$ | Hanger $^{1}$ | $1.75^{\prime \prime} /-^{2}$ | 228 | 456 | 683 | See note ${ }^{1}$ |

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $4^{\prime} 6 \mathrm{o} \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $16^{\prime} 5 \mathrm{o} \mathrm{o} / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 2 - Face Mount Hanger | IUS2.06/11.88 | 2.00 | N/A | 10-10dx1.5 | 2-Strong-Grip |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Floor Live <br> $(\mathbf{1 . 0 0})$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $17^{\prime}$ | $16^{\prime \prime}$ | 20.0 | 40.0 | UPPER FLOOR |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

UPPER FLOOR, UJ-02
1 piece(s) 11 7/8" TJI® 210 @ 16" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $661 @ 41 / 2^{\prime \prime}$ | $1460(3.50$ ") | Passed (45\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |
| Shear (lbs) | $633 @ 51 / 2^{\prime \prime}$ | 1655 | Passed (38\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |
| Moment (Ft-lbs) | $2556 @ 8^{\prime} 47 / 16^{\prime \prime}$ | 3795 | Passed (67\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |
| Live Load Defl. (in) | $0.239 @ 8^{\prime} 67 / 8^{\prime \prime}$ | 0.410 | Passed (L/823) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |
| Total Load Defl. (in) | $0.340 @ 8^{\prime} 61 / 16^{\prime \prime}$ | 0.820 | Passed (L/578) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(Alt} \mathrm{Spans)}$ |
| TJ-Pro ${ }^{\text {TM }}$ Rating | 57 | 50 | Passed | -- | -- |

Member Length : $21^{\prime} 1$ 3/4" System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $11 / 8^{\prime \prime}$ Panel ( $48^{\prime \prime}$ Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{\text {TM }}$ Rating include: $5 / 8^{\text {" Gypsum ceiling. }}$

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  | ( |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $4.25^{\prime \prime}$ | $1.75^{\prime \prime}$ | 212 | $457 /-27$ | 670 | $11 / 4^{\prime \prime}$ Rim Board |
| 2 - Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $3.50^{\prime \prime}$ | 354 | 709 | 1063 | Blocking |

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $4^{\prime} 6 \mathrm{6} \circ \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $8^{\prime} 4 \mathrm{4} 0 / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

| Vertical Load | Location | Spacing | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1- Uniform (PSF) | 0 to $21^{\prime} 3 "$ | $16 "$ | 20.0 | 40.0 | UPPER FLOOR |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator
ForteWEB Software Operator

PASSED
UPPER FLOOR, UJ-03
1 piece(s) $2 \times 8$ HF No. 2 @ 16" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 5' ${ }^{\prime \prime}$ <br> System : Floor <br> Member Type : Joist <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 316 @ 1 1/2" | 911 (1.50") | Passed (35\%) | -- | 1.0 D + 1.0 L (All Spans) |  |  |  |
| Shear (lbs) | 248 @ 8 3/4" | 1088 | Passed (23\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |  |  |
| Moment (Ft-lbs) | 442 @ 2' 11" | 1284 | Passed (34\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |  |  |
| Live Load Defl. (in) | 0.028 @ 2' 11" | 0.140 | Passed (L/999+) | -- | 1.0 D + 1.0 L (All Spans) |  |  |  |
| Total Load Defl. (in) | 0.040 @ 2' 11" | 0.279 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |  |  |
| TJ-Pro ${ }^{\text {TM }}$ Rating | N/A | N/A | N/A | -- | N/A |  |  |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A $15 \%$ increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Hanger on 71/4" SPF Ledger | $1.50^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 97 | 233 | 331 | See note ${ }^{1}$ |
| 2 - Hanger on $71 / 4^{\prime \prime}$ LSL beam | $3.50^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 103 | 247 | 349 | See note ${ }^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $5^{\prime} 7{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $5^{\prime} 7{ }^{\prime \prime} 0 / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 - Face Mount Hanger | LU28 | $1.50 "$ | $\mathrm{~N} / \mathrm{A}$ | $8-10 \mathrm{~d} \times 1.5$ | $6-10 \mathrm{~d} \times 1.5$ |  |
| 2 - Face Mount Hanger | LU28 | $1.500^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | $8-10 \mathrm{~d} \times 1.5$ | $6-10 \mathrm{~d} \times 1.5$ |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location (Side) | Spacing | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $6^{\prime}$ | $16 "$ | 25.0 | 60.0 | DECK w/ PAVERS |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

PASSED
UPPER FLOOR, UJ-04
1 piece(s) 11 7/8"TJI® 210 @ 24" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 674 @ 5 1/2" | 1156 (1.75") | Passed (58\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Shear (lbs) | 674 @ $51 / 2^{\prime \prime}$ | 1903 | Passed (35\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Moment (Ft-lbs) | 2841 @ 8' 10 5/8" | 4364 | Passed (65\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Live Load Defl. (in) | 0.338 @ 9' 1/2" | 0.576 | Passed (L/613) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (Alt Spans) |
| Total Load Defl. (in) | 0.533 @ 9' 1/4" | 0.864 | Passed (L/389) | -- | 1.0 D + 1.0 S (Alt Spans) |

Member Length : 20' $6^{\prime \prime}$ System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1-Hanger on $117 / 8$ SPF beam | 5.50" | Hanger ${ }^{1}$ | $1.75{ }^{\prime \prime} /-2$ | 264 | 447 | 711 | See note ${ }^{1}$ |
| 2 - Stud wall - SPF | 5.50" | 5.50" | 3.50" | 365 | 608 | 973 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- 2 Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $4^{\prime} 4^{\prime \prime}$ o/c |  |
| Bottom Edge (Lu) | $8^{\prime} 8 \mathrm{~B}^{\prime \prime} \mathrm{o} \mathrm{C}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.

- Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | IUS2.06/11.88 | 2.00 | N/A | 10-10dx1.5 | 2-Strong-Grip |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $20^{\prime} 111 / 2^{\prime \prime}$ | $24^{\prime \prime}$ | 15.0 | 25.0 | LOW ROOF |

## Weyerhaeuser Notes




 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

UPPER FLOOR, UJ-05
1 piece(s) 3 1/2" x 11 7/8" 1.55E TimberStrand® LSL @ 24" OC


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $1221 @ 14^{\prime} 23 / 4^{\prime \prime}$ | $8181\left(5.500^{\prime \prime}\right)$ | Passed (15\%) | -- | $1.0 \mathrm{D}+1.0$ S (All Spans) |
| Shear (lbs) | $585 @ 13^{\prime} 1 / 8^{\prime \prime}$ | 9878 | Passed (6\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Moment (Ft-lbs) | $-1811 @ 14^{\prime} 23 / 4^{\prime \prime}$ | 19080 | Passed (9\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Live Load Defl. (in) | $0.071 @ 20^{\prime} 111 / 2^{\prime \prime}$ | 0.449 | Passed (2L/999+) | -- | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |
| Total Load Defl. (in) | $0.089 @ 20^{\prime} 111 / 2^{\prime \prime}$ | 0.673 | Passed (2L/999+) | -- | $1.0 \mathrm{D}+1.0$ S (Alt Spans) |

Member Length : 20' $6^{\prime \prime}$ System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 \mathrm{~L} / 360)$ and $T L(2 L / 240)$.
- A $4 \%$ increase in the moment capacity has been added to account for repetitive member usage.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1 - Hanger on $117 / 8^{\prime \prime}$ SPF beam | 5.50" | Hanger ${ }^{1}$ | 1.50" | 171 | 326 | 497 | See note ${ }^{1}$ |
| 2 - Stud wall - SPF | 5.50" | 5.50" | 1.50" | 458 | 763 | 1221 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | Continuous |  |
| Bottom Edge (Lu) | Continuous |  |

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 - Face Mount Hanger | LUS410 | $2.00 "$ | N/A | $8-10 \mathrm{dx} 1.5$ | $6-10 \mathrm{~d}$ |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location (Side) | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Snow <br> $\mathbf{( 1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $20^{\prime} 111 / 2^{\prime \prime}$ | $24^{\prime \prime}$ | 15.0 | 25.0 | LOW ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $9937 @ 33 / 4^{\prime \prime}$ | $12272\left(5.25^{\prime \prime}\right)$ | Passed (81\%) | -- | $1.0 \mathrm{D}+1.0$ S (All Spans) |
| Shear (lbs) | $8213 @ 2^{\prime} 21 / 4^{\prime \prime}$ | 23466 | Passed (35\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Pos Moment (Ft-lbs) | $59583 @ 12^{\prime} 75 / 16^{\prime \prime}$ | 85930 | Passed (69\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |
| Live Load Defl. (in) | $0.478 @ 12^{\prime} 75 / 16^{\prime \prime}$ | 0.820 | Passed (L/617) | -- | $1.0 \mathrm{D}+1.0$ S (All Spans) |
| Total Load Defl. (in) | $0.849 @ 12^{\prime} 75 / 16^{\prime \prime}$ | 1.230 | Passed (L/348) | -- | $1.0 \mathrm{D}+1.0$ S (All Spans) |

Member Length : $25^{\prime} 4$ 5/8" System : Roof
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 0.92 that was calculated using length $\mathrm{L}=24^{\prime} 71 / 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  | ( |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Snow | Factored |  |
| 1-Stud wall - SPF | $5.25^{\prime \prime}$ | $5.25^{\prime \prime}$ | $4.25 "$ | 4342 | 5595 | 9937 | Blocking |
| 2 - Stud wall - SPF | $7.25^{\prime \prime}$ | $7.25^{\prime \prime}$ | $4.31 "$ | 4399 | 5669 | 10068 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $25^{\prime} 55^{\prime \prime}$ o/c |  |
| Bottom Edge (Lu) | $25^{\prime} 5$ " $/ \mathrm{c}$ |  |

$\bullet$ •Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $25^{\prime} 45 / 8^{\prime \prime}$ | N/A | 28.1 | -- |  |
| 1- Uniform (PSF) | 0 to $25^{\prime} 45 / 8^{\prime \prime}($ Top) | $9^{\prime}$ | 15.0 | 25.0 | ROOF |
| 2 - Uniform (PSF) | 0 to $25^{\prime} 45 / 8^{\prime \prime}$ (Top) | $5^{\prime}$ | 10.0 | - | WALL |
| 3- Uniform (PSF) | 0 to $25^{\prime} 45 / 8^{\prime \prime}$ (Front) | $8^{\prime} 9^{\prime \prime}$ | 15.0 | 25.0 | LOWER ROOF |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

## MEMBER REPORT



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $5852 @ 15^{\prime} 63 / 4^{\prime \prime}$ | $6563(1.50 ")$ | Passed (89\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | $5091 @ 14^{\prime} 67 / 8^{\prime \prime}$ | 16071 | Passed (32\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| System : Floor |  |  |  |  |  |
| Moment (Ft-lbs) | $22279 @ 7^{\prime} 113 / 8^{\prime \prime}$ | 39805 | Passed (56\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.356 @ 7^{\prime} 113 / 8^{\prime \prime}$ | 0.381 | Passed (L/514) | -- | $1.0 \mathrm{D}+1.0$ L (All Spans) |
| Total Load Defl. (in) | $0.506 @ 77^{\prime} 113 / 8^{\prime \prime}$ | 0.761 | Passed (L/361) | -- | $1.0 \mathrm{D}+1.0$ L (All Spans) |

- Deflection criteria: LL (L/480) and TL (L/240).
- MOE has been reduced by $9 \%$ to account for the effects of holes.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50 "$ | $2.05^{\prime \prime}$ | 1816 | 4292 | 6108 | Blocking |
| 2 - Hanger on 117/8" PSL beam | $5.25^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 1828 | 4348 | 6176 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $15^{\prime} 7{ }^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $15^{\prime} 7 \mathrm{o} \circ \mathrm{C}$ |  |

$\bullet$-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Face Mount Hanger | HGUS7.25/12 | $4.00 "$ | N/A | $56-10 \mathrm{~d}$ | $20-10 \mathrm{~d}$ |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $(\mathbf{0 . 9 0})$ | Floor Live <br> $(\mathbf{1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $15^{\prime} 63 / 4^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | 26.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $16^{\prime}(\mathrm{Top})$ | $13^{\prime} 6 "$ | 15.0 | 40.0 | UPPER FLOOR |


| Holes (Size) | Direction | Diameter | Vertical Offset | Location | Shear (lbs) |  |  | Moment ( Ft -lbs) |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Actual | Allowed | Result | Actual | Allowed | Result |  |
| 1 - Circular (L) | Horz | 6.00" | $515 / 16^{\prime \prime}$ | 5' 4" | 2201 | 4255 | Passed (52\%) | 19652 | 34670 | Passed (57\%) |  |
| 2 - Circular (L) | Horz | 6.00 " | $515 / 16^{\prime \prime}$ | $8{ }^{\prime}$ | 232 | 4255 | Passed (5\%) | 22278 | 34670 | Passed (64\%) |  |
| 3 - Circular (L) | Horz | 6.00" | $515 / 16^{\prime \prime}$ | 10' 8" | 2281 | 4255 | Passed (54\%) | 19439 | 34670 | Passed (56\%) |  |

- Hole locations are measured from the outside face of left support (or left cantilever end) to the centerline of the hole.
- Vertical Offset is measured from the top of the member to the centerline of the hole.


## MEMBER REPORT



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 15' 9 3/4" <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 17329 @ 4 1/2" | 17850 (6.00") | Passed (97\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |  |
| Shear (lbs) | 17026 @ 1'57/8" | 18481 | Passed (92\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |  |
| Moment (Ft-lbs) | 42214 @ 4' 6 3/4" | 45776 | Passed (92\%) | 1.15 | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |
| Live Load Defl. (in) | 0.373 @ 7' 3 15/16" | 0.386 | Passed (L/497) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |
| Total Load Defl. (in) | 0.744 @ 7' 4 5/8" | 0.772 | Passed (L/249) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~S}$ (All Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240)
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1 - Stud wall - SPF | 6.00" | 6.00" | 5.82 " | 8149 | 4235 | 8005 | 17329 | Blocking |
| 2 - Hanger on 11 7/8" PSL beam | 5.25" | Hanger ${ }^{1}$ | 1.50" | 2777 | 546 | 2395 | 5172 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $15^{\prime} 10 \mathrm{o} \mathrm{o} / \mathrm{C}$ |  |
| Bottom Edge (Lu) | $15^{\prime} 10 \mathrm{o} / \mathrm{C}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 2 - Face Mount Hanger | Connector not found | N/A | N/A | N/A | N/A |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $(\mathbf{1 . 0 0 )}$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 15' 8 1/2" <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 12446 @ 12' 8 3/4" | 12272 (5.50") | Passed (101\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Adj Spans) |  |
| Shear (lbs) | 5908 @ 13' 11 3/8" | 13861 | Passed (43\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |  |
| Moment (Ft-lbs) | -17463 @ 12' 8 3/4" | 34332 | Passed (51\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |  |
| Live Load Defl. (in) | 0.085 @ 16' | 0.200 | Passed (2L/928) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans) |  |
| Total Load Defl. (in) | 0.177 @ 16' | 0.327 | Passed (2L/444) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (0.2") and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1 - Hanger on 11 7/8" LSL beam | 3.50" | Hanger ${ }^{1}$ | 1.50" | 1902 | 1860 | 1274 | 4252 | See note ${ }^{1}$ |
| 2-Stud wall - SPF | 4.50" | 4.50" | 2.38" | 1145 | 4117 | 1423/-734 | 5300 | None |
| 3 - Stud wall - SPF | 5.50" | 5.50 " | 5.58" | 6141 | 3270 | 5136 | 12446 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $15^{\prime} 9{ }^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $15^{\prime} 9{ }^{\prime \prime} \circ / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Accessories |  |  |  |  |  |
| 1 - Face Mount Hanger | HHUS5.50/10 | 3.00 " | N/A | $30-10 \mathrm{~d}$ | $10-10 \mathrm{~d}$ |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 6' 4 1/2" <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 1905 @ 6' 3" | 4463 (3.00") | Passed (43\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 1139 @ 1' 5 3/8" | 8590 | Passed (13\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |
| Moment (Ft-lbs) | 2704 @ 3' $31 / 2^{\prime \prime}$ | 15953 | Passed (17\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.023 @ 3' 3 1/2" | 0.148 | Passed (L/999+) | -- | 1.0 D + 1.0 L (All Spans) |  |
| Total Load Defl. (in) | 0.032 @ 3' 3 1/2" | 0.296 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Factored | Accessories |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 586 | 1448 | 2034 | Blocking |
| 2 - Stud wall - SPF | $3.00^{\prime \prime}$ | $3.00^{\prime \prime}$ | $1.50^{\prime \prime}$ | 549 | 1357 | 1905 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $6^{\prime} 5{ }^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $6^{\prime} 55^{\prime \prime} 0 / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> (1.00) | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $6^{\prime} 41 / 2^{\prime \prime}$ | N/A | 13.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $6^{\prime} 41 / 2^{\prime \prime}(T o p)$ | $11^{\prime}$ | 15.0 | 40.0 | UPPER FLOOR |

## Weyerhaeuser Notes




 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Brian Lampe |  |
| BTL Engineering |  |
| (425) 814-8448 |  |
| brian.lampe@btleng.net |  |

MEMBER REPORT
PASSED

## UPPER FLOOR, UB-06

1 piece(s) 3 1/ 2" $\times 11$ 7/ 8" 1.55E TimberStrand ${ }^{\circledR}$ LSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 6' $1^{\prime \prime}$ <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 1838 @ $31 / 2^{\prime \prime}$ | 4725 (1.50") | Passed (39\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 1240 @ 1'3 3/8" | 8590 | Passed (14\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |
| Moment (Ft-lbs) | 2795 @ 3' 4" | 15953 | Passed (18\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.025 @ 3' 4" | 0.152 | Passed (L/999+) | -- | 1.0 D + 1.0 L (All Spans) |  |
| Total Load Defl. (in) | 0.035 @ 3' 4" | 0.304 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1 - Hanger on $117 / 8^{\prime \prime}$ LSL beam | 3.50 " | Hanger ${ }^{1}$ | 1.50 " | 577 | 1433 | 2010 | See note ${ }^{1}$ |
| 2 - Hanger on 11 7/8" LSL beam | 3.50 " | Hanger ${ }^{1}$ | 1.50 " | 577 | 1433 | 2010 | See note ${ }^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $6^{\prime} 1$ " o/c |  |
| Bottom Edge (Lu) | $6^{\prime} 1 " 0 / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | LUS410 | 2.00" | N/A | 8-16d | 6-16d |  |
| 2 - Face Mount Hanger | LUS410 | 2.00" | N/A | 8-16d | 6-16d |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | $31 / 2^{\prime \prime}$ to $6^{\prime} 41 / 2^{\prime \prime}$ | N/A | 13.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $6^{\prime} 8^{\prime \prime}(\mathrm{Top})$ | $10^{\prime} 9 "$ | 15.0 | 40.0 | UPPER FLOOR |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

## UPPER FLOOR, UB-07

1 piece(s) 3 1/ 2" $\times 11$ 7/ 8" 1.55E TimberStrand ${ }^{\circledR}$ LSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 6' $1^{\prime \prime}$ <br> System: Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 395 @ $31 / 2^{\prime \prime}$ | 4725 (1.50") | Passed (8\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 267 @ 1'3 3/8" | 8590 | Passed (3\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |
| Moment (Ft-lbs) | 601 @ 3' 4" | 15953 | Passed (4\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.005 @ 3' 4" | 0.152 | Passed (L/999+) | -- | 1.0 D + 1.0 L (All Spans) |  |
| Total Load Defl. (in) | 0.007 @ 3' 4" | 0.304 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1- Hanger on $117 / 8^{\prime \prime}$ LSL beam | $3.50^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 146 | 283 | 429 | See note ${ }^{1}$ |
| 2 - Hanger on $117 / 8^{\prime \prime}$ LSL beam | $3.50^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 146 | 283 | 429 | See note $^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $6^{\prime} 1$ " o/c |  |
| Bottom Edge (Lu) | $6^{\prime} 1 " 0 / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1 - Face Mount Hanger | HUC410 | 2.50" | N/A | 14-10dx1.5 | 6-10d |  |
| 2 - Face Mount Hanger | Connector not found | N/A | N/A | N/A | N/A |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | $31 / 2^{\prime \prime}$ to $6^{\prime} 41 / 2^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | 13.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $6^{\prime} 8^{\prime \prime}($ (Top) | $2^{\prime} 11 / 2^{\prime \prime}$ | 15.0 | 40.0 | UPPER FLOOR |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : $21^{\prime} 13 / 4^{\prime \prime}$ <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology: ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 3264 @ 19' 1/4" | 8181 (5.50") | Passed (40\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 2538 @ 17' 9 5/8" | 8590 | Passed (30\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |
| Moment (Ft-lbs) | 6014 @ 12' 1 5/8" | 15953 | Passed (38\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |
| Live Load Defl. (in) | 0.397 @ 10' $31 / 16{ }^{\prime \prime}$ | 0.467 | Passed (L/565) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |
| Total Load Defl. (in) | 0.582 @ 10' 2 1/16" | 0.934 | Passed (L/385) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Upward deflection on right cantilever exceeds overhang deflection criteria.
- MOE has been reduced by $9 \%$ to account for the effects of holes.
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $4.25^{\prime \prime}$ | $1.50^{\prime \prime}$ | 364 | $682 /-33$ | 1046 | $11 / 4$ " Rim Board |
| 2 - Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50 "$ | $2.19^{\prime \prime}$ | 1059 | 2206 | 3264 | Blocking |

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $21^{\prime} 2 " \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $21^{\prime} 2 " \circ / \mathrm{c}$ |  |

$\bullet$ Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0-Self Weight (PLF) | $11 / 4^{\prime \prime}$ to $21^{\prime} 3^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | 13.0 | -- |  |
| 1- Uniform (PSF) | 0 to $21^{\prime} 3^{\prime \prime}$ (Top) | $1^{\prime} 4^{\prime \prime}$ | 15.0 | 40.0 | UPPER FLOOR |
| 2 - Point (lb) | $16^{\prime} 101 / 4^{\prime \prime}$ (Back) | $\mathrm{N} / \mathrm{A}$ | 577 | 1433 | Linked from: UB- <br> 06, Support 1 |
| 3 - Point (lb) | $21^{\prime} 11 / 4^{\prime \prime}$ (Back) | $\mathrm{N} / \mathrm{A}$ | 146 | 283 | Linked from: UB- <br> 07, Support 1 |


| Holes (Size) | Direction | Diameter | Vertical Offset | Location | Shear (lbs) |  |  | Moment (Ft-lbs) |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Actual | Allowed | Result | Actual | Allowed | Result |  |
| 1 - Circular (L) | Horz | 6.00" | $515 / 16{ }^{\prime \prime}$ | $6^{\prime}$ | 551 | 5476 | Passed (10\%) | 4388 | 13895 | Passed (32\%) |  |
| 2 - Circular (L) | Horz | 6.00" | $515 / 16{ }^{\prime \prime}$ | $9 '$ | 292 | 5476 | Passed (5\%) | 5589 | 13895 | Passed (40\%) |  |
| 3 - Circular (L) | Horz | 6.00" | $515 / 16{ }^{\prime \prime}$ | 12' | 210 | 5476 | Passed (4\%) | 6013 | 13895 | Passed (43\%) |  |

- Hole locations are measured from the outside face of left support (or left cantilever end) to the centerline of the hole.
- Vertical Offset is measured from the top of the member to the centerline of the hole.

PASSED

## UPPER FLOOR, UB-09

1 piece(s) 3 1/2" $\times 11$ 7/8" $1.55 E$ TimberStrand $®$ LSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : $21^{\prime} 13 / 4^{\prime \prime}$ <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology: ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 3701 @ 16' 9 1/4" | 8181 (5.50") | Passed (45\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 770 @ 15' 6 5/8" | 8590 | Passed (9\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Moment (Ft-lbs) | -2725@16' 9 1/4" | 15953 | Passed (17\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.142 @ 21' ${ }^{\prime \prime}$ | 0.224 | Passed (2L/756) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |
| Total Load Defl. (in) | 0.151 @ 21' 3 " | 0.448 | Passed (2L/710) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: $\operatorname{LL}(2 \mathrm{~L} / 480)$ and $\mathrm{TL}(2 \mathrm{~L} / 240)$.
- MOE has been reduced by $9 \%$ to account for the effects of holes.
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $4.25^{\prime \prime}$ | $1.50^{\prime \prime}$ | 222 | $456 /-102$ | 678 | $11 / 4^{\prime \prime}$ Rim Board |
| 2 - Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $2.49^{\prime \prime}$ | 1201 | 2500 | 3701 | Blocking |

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $21^{\prime} 2 " \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $21^{\prime} 2 " \circ / \mathrm{c}$ |  |

$\bullet$ Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> (1.00) | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0-Self Weight (PLF) | $11 / 4^{\prime \prime}$ to $21^{\prime} 3 "$ | $\mathrm{~N} / \mathrm{A}$ | 13.0 | -- |  |
| 1- Uniform (PSF) | 0 to $21^{\prime} 3^{\prime \prime}$ (Top) | $1^{\prime} 4^{\prime \prime}$ | 15.0 | 40.0 | UPPER FLOOR |
| 2 - Point (lb) | $16^{\prime} 101 / 4^{\prime \prime}$ (Front) | $\mathrm{N} / \mathrm{A}$ | 577 | 1433 | Linked from: UB- <br> 06, Support 2 |
| 3 - Point (lb) | $21^{\prime} 11 / 4^{\prime \prime}$ (Front) | $\mathrm{N} / \mathrm{A}$ | 146 | 283 | Linked from: UB- <br> 07, Support 2 |


| Holes (Size) | Direction | Diameter | Vertical Offset | Location | Shear (lbs) |  |  | Moment ( Ft -lbs) |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Actual | Allowed | Result | Actual | Allowed | Result |  |
| 1 - Circular (L) | Horz | 6.00 " | 5 15/16" | $6{ }^{\prime}$ | 210 | 5476 | Passed (4\%) | 2302 | 13895 | Passed (17\%) |  |
| 2 - Circular (L) | Horz | 6.00" | $515 / 16{ }^{\prime \prime}$ | $9{ }^{\prime}$ | 226 | 5476 | Passed (4\%) | 2399 | 13895 | Passed (17\%) |  |
| 3 - Circular (L) | Horz | 6.00" | $515 / 16{ }^{\prime \prime}$ | 12' | 485 | 5476 | Passed (9\%) | 1719 | 13895 | Passed (12\%) |  |

- Hole locations are measured from the outside face of left support (or left cantilever end) to the centerline of the hole.
- Vertical Offset is measured from the top of the member to the centerline of the hole.


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : $21^{\prime} 1$ 3/4" <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 2795 @ 16' 9 1/4" | 8181 (5.50") | Passed (34\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 1183 @ 17' 11 7/8" | 8590 | Passed (14\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |  |
| Moment (Ft-lbs) | -4256@ 16' 9 1/4" | 15953 | Passed (27\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.223 @ 21' ${ }^{\prime \prime}$ | 0.224 | Passed (2L/482) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |
| Total Load Defl. (in) | 0.271 @ 21' 3 " | 0.448 | Passed (2L/396) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- MOE has been reduced by $9 \%$ to account for the effects of holes.
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $4.25^{\prime \prime}$ | $1.50^{\prime \prime}$ | 192 | $456 /-164$ | 648 | $11 / 4$ " Rim Board |
| 2 - Stud wall - SPF | $5.50^{\prime \prime}$ | 5.50 | $1.88^{\prime \prime}$ | 988 | 1807 | 2795 | Blocking |

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $21^{\prime} 2$ " o/c |  |
| Bottom Edge (Lu) | $21^{\prime} 2$ " o/c |  |

$\bullet$ Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | $11 / 4^{\prime \prime}$ to $21^{\prime} 3^{\prime \prime}$ | N/A | 13.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $21^{\prime} 3^{\prime \prime}$ (Top) | $1^{\prime} 4 \prime$ | 15.0 | 40.0 | UPPER FLOOR |
| 2 - Point (Ib) | $17^{\prime} 3^{\prime \prime}$ (Back) | $\mathrm{N} / \mathrm{A}$ | 240 | 480 | STAIRS |
| 3 - Point (Ib) | $21^{\prime}$ (Back) | $\mathrm{N} / \mathrm{A}$ | 240 | 480 | STAIRS |


| Holes (Size) | Direction | Diameter | Vertical Offset | Location | Shear (Ibs) |  |  | Moment (Ft-lbs) |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Actual | Allowed | Result | Actual | Allowed | Result |  |
| 1-Circular (L) | Horz | 6.00" | 5 15/16" | $6^{\prime}$ | 210 | 5476 | Passed (4\%) | 2131 | 13895 | Passed (15\%) |  |
| 2-Circular (L) | Horz | 6.00" | $515 / 16^{\prime \prime}$ | $9 '$ | 319 | 5476 | Passed (6\%) | 2137 | 13895 | Passed (15\%) |  |
| 3-Circular (L) | Horz | 6.00" | $515 / 16^{\prime \prime}$ | 12' | 578 | 5476 | Passed (11\%) | 2103 | 13895 | Passed (15\%) |  |

- Hole locations are measured from the outside face of left support (or left cantilever end) to the centerline of the hole.
- Vertical Offset is measured from the top of the member to the centerline of the hole.


## UPPER FLOOR, UB-14

1 piece(s) 3 1/2" $\times 11$ 7/8" $1.55 E$ TimberStrand $®$ LSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | 1616 @ $51 / 4^{\prime \prime}$ | $4725(1.50 ")$ | Passed (34\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | 1351 @ $1^{\prime} 51 / 8^{\prime \prime}$ | 8590 | Passed (16\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Moment (Ft-lbs) | $4874 @ 66^{\prime} 55 / 8^{\prime \prime}$ | 15953 | Passed (31\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.125 @ 6^{\prime} 55 / 8^{\prime \prime}$ | 0.302 | Passed (L/999+) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$ |
| Total Load Defl. (in) | $0.186 @ 6^{\prime} 55 / 8^{\prime \prime}$ | 0.603 | Passed (L/778) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |

Member Length : $12^{\prime} 3 / 4^{\prime \prime}$ System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Hanger on 117/8" PSL beam | $5.25^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 564 | 1164 | 1728 | See note ${ }^{1}$ |
| 2 - Hanger on 117/8" LSL beam | $1.75^{\prime \prime}$ | Hanger $^{1}$ | $1.50^{\prime \prime}$ | 542 | 1112 | 1654 | See note ${ }^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $12^{\prime} 1 " \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $12^{\prime} 1 " \circ / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Connector: Simpson Strong-Tie |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |  |
| 1 - Face Mount Hanger | HUC410 | $2.50^{\prime \prime}$ | N/A | $18-10 \mathrm{dx1.5}$ | $10-10 \mathrm{~d}$ |  |  |
| 2 - Face Mount Hanger | HUC410 | $2.50^{\prime \prime}$ | $\mathrm{N} / \mathrm{A}$ | $18-10 \mathrm{dx1.5}$ | $10-10 \mathrm{~d}$ |  |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $(\mathbf{1 . 0 0})$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | $51 / 4^{\prime \prime}$ to $12^{\prime} 6^{\prime \prime}$ | N/A | 13.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $12^{\prime} 73 / 4^{\prime \prime}$ (Back) | $3^{\prime}$ | 25.0 | 60.0 | DECK w/ PAVERS |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

## UPPER FLOOR, UB-15

1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $10191 @ 14^{\prime} 91 / 4^{\prime \prime}$ | $12272\left(5.50^{\prime \prime}\right)$ | Passed (83\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Shear (lbs) | $2861 @ 15^{\prime} 117 / 8^{\prime \prime}$ | 12053 | Passed (24\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| System : Floor |  |  |  |  |  |
| Moment (Ft-lbs) | $-14900 @ 14^{\prime} 91 / 4^{\prime \prime}$ | 29854 | Passed (50\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.393 @ 21^{\prime}$ | 0.415 | Passed (2L/380) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(Alt} \mathrm{Spans)}$ |
| Building Use : Residential |  |  |  |  |  |
| Total Load Defl. (in) | $0.563 @ 21^{\prime}$ | 0.623 | Passed (2L/266) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (Alt Spans) |

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1- Hanger on 11 7/8" SPF beam | $7.00 "$ | Hanger ${ }^{1}$ | $1.50 "$ | 722 | $550 /-555$ | 525 | 1528 | See note ${ }^{1}$ |
| 2 - Stud wall - SPF | $5.50 "$ | $5.50 "$ | $4.57^{\prime \prime}$ | 4977 | 4576 | 2376 | 10191 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $20^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $20^{\prime} 5 \mathrm{o} / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 - Face Mount Hanger | HUC610 | 2.50 | N/A | $14-10 \mathrm{dx} \times 1.5$ | $6-10 \mathrm{~d}$ |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Snow <br> (1.15) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |



## Project: RAMAIYAH RESIDENCE

Designed By: BTL
Date: $\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: $\underline{U}$

$\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: U2.19

## Gravity




Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $701 @ 31 / 2^{\prime \prime}$ | $1005\left(1.75{ }^{\prime \prime}\right)$ | Passed (70\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | $701 @ 31 / 2^{\prime \prime}$ | 1655 | Passed (42\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Moment (Ft-lbs) | $2169 @ 66^{\prime} 53 / 4^{\prime \prime}$ | 3795 | Passed (57\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.128 @ 6^{\prime} 53 / 4^{\prime \prime}$ | 0.309 | Passed (L/999+) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$ |
| Total Load Defl. (in) | $0.182 @ 66^{\prime} 53 / 4^{\prime \prime}$ | 0.619 | Passed (L/817) | -- | $1.0 \mathrm{D} \mathrm{+} \mathrm{1.0} \mathrm{~L} \mathrm{(All} \mathrm{Spans)}$ |
| TJ-Pro ${ }^{\text {TM }}$ Rating | 63 | 45 | Passed | -- | -- |

Member Length : $12^{\prime} 41 / 2^{\prime \prime}$ System : Floor
Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of $11 / 8^{\prime \prime}$ Panel (48" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro ${ }^{T M}$ Rating include: $5 / 8^{\text {" Gypsum ceiling. }}$

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1- Hanger on $117 / 8^{\prime \prime}$ GLB beam | $3.50^{\prime \prime}$ | Hanger $^{1}$ | $1.75^{\prime \prime} /-^{2}$ | 216 | 518 | 734 | See note $^{1}$ |
| 2 - Hanger on $117 / 8^{\prime \prime}$ SPF Ledger | $7.50^{\prime \prime}$ | Hanger $^{1}$ | $1.75^{\prime \prime} /-^{2}$ | 227 | 545 | 772 | See note $^{1}$ |

- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.
- ${ }^{2}$ Required Bearing Length / Required Bearing Length with Web Stiffeners

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | 5 ' $0 / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $12^{\prime} 5{ }^{\prime \prime} \mathrm{o} / \mathrm{c}$ |  |

-TJI joists are only analyzed using Maximum Allowable bracing solutions.
-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

|  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| 1- Face Mount Hanger | IUS2.06/11.88 | $2.000^{\prime \prime}$ | N/A | $10-10 \mathrm{dx1.5}$ | 2-Strong-Grip |  |
| 2 - Face Mount Hanger | IUS2.06/11.88 | 2.00 | N/A | $10-10 \mathrm{dx1.5}$ | 2-Strong-Grip |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Load | Location | Spacing | Dead <br> $(\mathbf{0 . 9 0})$ | Floor Live <br> $(\mathbf{1 . 0 0})$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 1 - Uniform (PSF) | 0 to $13^{\prime} 31 / 2^{\prime \prime}$ | $16^{\prime \prime}$ | 25.0 | 60.0 | DECK w/ PAVERS |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

PASSED

## MAIN FLOOR, MB-01

1 piece(s) 7" x 18" 2.2E Parallam® PSL


Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | 14114 @ 4" | 16363 (5.50") | Passed (86\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Shear (lbs) | $13880 @ 11^{\prime} 111 / 2^{\prime \prime}$ | 28014 | Passed (50\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Moment (Ft-lbs) | 57041 @ 4' $51 / 2^{\prime \prime}$ | 100429 | Passed (57\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Live Load Defl. (in) | $0.174 @ 7^{\prime} 3^{\prime \prime}$ | 0.420 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Total Load Defl. (in) | $0.337 @ 7^{\prime} 3^{\prime \prime}$ | 0.840 | Passed (L/599) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |

Member Length : 17' 5 1/2" System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1-Stud wall - SPF | 5.50" | 5.50 " | 4.74" | 6770 | 3753 | 6039 | 14114 | Blocking |
| 2-Stud wall - SPF | 5.50" | 5.50" | $1.78{ }^{\prime \prime}$ | 2625 | 1599 | 1966 | 5299 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $17^{\prime} 6{ }^{\prime \prime} \circ / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $17^{\prime} 6{ }^{\prime \prime} \circ / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> (0.90) | Floor Live <br> (1.00) | Snow <br> (1.15) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 - Self Weight (PLF) | 0 to $17^{\prime} 51 / 2^{\prime \prime}$ | N/A | 39.4 | -- | -- |  |
| 1 - Uniform (PSF) | 0 to $17^{\prime} 51 / 2^{\prime \prime}(T o p)$ | $1^{\prime} 73 / 16^{\prime \prime}$ | 20.0 | 40.0 | - | MAIN FLOOR |
| 2 - Point (lb) | $4^{\prime} 51 / 2^{\prime \prime}(T o p)$ | $N / A$ | 8149 | 4235 | 8005 | Linked from: UB- <br> $03, S u p p o r t ~$ |


| Holes (Size) | Direction | Diameter | Vertical Offset | Location | Shear (lbs) |  |  | Moment (Ft-Ibs) |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Actual | Allowed | Result | Actual | Allowed | Result |  |
| 1-Circular (S) | Horz | 6.00" | $9{ }^{\prime \prime}$ | $7{ }^{\prime}$ | 4080 | 10457 | Passed (39\%) | 47131 | 96710 | Passed (49\%) |  |
| 2 - Circular (S) | Horz | 6.00 " | $9{ }^{\prime \prime}$ | $10^{\prime}$ | 4439 | 10457 | Passed (42\%) | 34442 | 96710 | Passed (36\%) |  |
| 3 - Circular (S) | Horz | 6.00" | 9" | $13 '$ | 4797 | 10457 | Passed (46\%) | 20679 | 96710 | Passed (21\%) |  |

- Hole locations are measured from the outside face of left support (or left cantilever end) to the centerline of the hole.
- Vertical Offset is measured from the top of the member to the centerline of the hole.

[^0]

Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) [Group] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 12276 @ 4" | 12856 (5.50") | Passed (95\%) | -- | 1.0 D + 0.75 L + 0.75 S (Alt Spans) [8] |
| Shear (lbs) | 4745 @ 7' $81 / 2^{\prime \prime}$ | 14575 | Passed (33\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) [1] |
| Pos Moment (Ft-lbs) | 7064 @ 8'10" | 41250 | Passed (17\%) | 1.00 | 1.0 D + 1.0 L (Alt Spans) [1] |
| Neg Moment (Ft-lbs) | -6230 @ 6' 2 3/4" | 31797 | Passed (20\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) [1] |
| Live Load Defl. (in) | 0.011 @ 9' 4 7/8" | 0.157 | Passed (L/999+) | -- | 1.0 D + 1.0 L (Alt Spans) [1] |
| Total Load Defl. (in) | 0.014 @ 9' 5 1/4" | 0.314 | Passed (L/999+) | -- | 1.0 D + 1.0 L (Alt Spans) [1] |

Member Length : $12^{\prime} 6^{\prime \prime}$ System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=5^{\prime} 31 / 4^{\prime \prime}$.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=3^{\prime} 63 / 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1-Stud wall - SPF | 5.50" | 5.50" | 5.25 " | 5696 | 6359/-550 | 2453 | 12276 | Blocking |
| 2-Stud wall-SPF | 5.50" | 5.50" | $3.85{ }^{\prime \prime}$ | 2531 | 6465 | 1123/-579 | 8995 | None |
| 3 - Hanger on 15" GLB beam | 3.50" | Hanger ${ }^{1}$ | 1.50" | 669 | 2118/-125 | 450/-232 | 2787 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :---: | :---: | :---: |
| Top Edge (Lu) | 12' 6" o/c |  |
| Bottom Edge (Lu) | 12' 6" o/c |  |

$\bullet$ •Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 - Face Mount Hanger | HU612 | $2.50 "$ | N/A | $22-10 \mathrm{~d}$ | $8-10 \mathrm{~d}$ |  |

[^1]| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> (1.00) | Snow <br> (1.15) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Brian Lampe |  |
| BTL Engineering |  |
| (425) 814-8448 |  |
| brian.lampe@btleng.net |  |



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) [Group] |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | 6177 @ 9' | 6177 (1.73") | Passed (100\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1] |
| Shear (lbs) | $10626 @ 1^{\prime} 111 / 2^{\prime \prime}$ | 20114 | Passed (53\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1] |
| Pos Moment (Ft-lbs) | $30824 @ 3^{\prime} 23 / 4^{\prime \prime}$ | 68310 | Passed (45\%) | 1.15 | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1] |
| Live Load Defl. (in) | $0.037 @ 4^{\prime} 45 / 16^{\prime \prime}$ | 0.217 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1] |
| Total Load Defl. (in) | $0.069 @ 44^{\prime} 43 / 8^{\prime \prime}$ | 0.433 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) [1] |

Member Length : 9
System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $L=8^{\prime} 8^{\prime \prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored |  |
| 1-Stud wall - SPF | 5.50" | 5.50" | 4.63" | 5007 | 4000 | 3764 | 10830 | Blocking |
| 2 - Hanger on 18" GLB beam | 5.50" | Hanger ${ }^{1}$ | 1.73" | 3036 | 2378 | 1972 | 6299 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $9^{\prime}$ o/c |  |
| Bottom Edge (Lu) | 9 o c |  |

-Maximum allowable bracing intervals based on applied load.
Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 - Face Mount Hanger | HGUS5.50/14 | $4.00 "$ | N/A | $66-10 \mathrm{~d}$ | $22-10 \mathrm{~d}$ |  |

[^2]| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> (1.00) | Snow <br> (1.15) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to
www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Brian Lampe |  |
| BTL Engineering |  |
| (425) 814-8448 |  |
| brian.lampe@btleng.net |  |

## MEMBER REPORT



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 6511 @ 26' 4 1/2" | 6563 (1.50") | Passed (99\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans) |
| Shear (lbs) | 9984 @ 11' 3 5/8" | 16071 | Passed (62\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |
| Moment (Ft-lbs) | -28746 @ 12' 9" | 39805 | Passed (72\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | 0.187 @ 6' 6" | 0.310 | Passed (L/798) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans) |
| Total Load Defl. (in) | 0.299 @ 6' 6" | 0.621 | Passed (L/499) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (Alt Spans) |

Member Length : $26^{\prime} 4$ 1/2" System : Floor
Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Member should be side-loaded from both sides of the member or braced to prevent rotation.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Total |  |
| 1-Stud wall - SPF | 5.50" | 5.50 " | 2.27" | 2519 | 4245/-557 | 986 | 7750/-557 | Blocking |
| 2 - Column Cap - steel | 11.00" | 11.00" | 5.24" | 10384 | 10928 | 5781 | 27093 | None |
| 3 - Hanger on 11 7/8" SPF Ledger | 7.50" | Hanger ${ }^{1}$ | 1.50" | 3023 | 3731/-224 | 1905 | 8659/-224 | See note ${ }^{1}$ |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.
- At hanger supports, the Total Bearing dimension is equal to the width of the material that is supporting the hanger
- ${ }^{1}$ See Connector grid below for additional information and/or requirements.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $26^{\prime} 5^{\prime \prime} 0 / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $26^{\prime} 5^{\prime \prime} 0 / \mathrm{c}$ |  |

$\bullet$-Maximum allowable bracing intervals based on applied load.

## Connector: Simpson Strong-Tie

| Support | Model | Seat Length | Top Fasteners | Face Fasteners | Member Fasteners | Accessories |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 - Face Mount Hanger | Connector not found | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ | $\mathrm{N} / \mathrm{A}$ |  |

- Refer to manufacturer notes and instructions for proper installation and use of all connectors.

| Vertical Loads | Location (Side) | Tributary Width | $\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$ | Floor Live (1.00) | $\begin{aligned} & \text { Snow } \\ & (1.15) \end{aligned}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 - Self Weight (PLF) | 0 to 26' 4 1/2" | N/A | 26.0 | -- | -- |  |
| 1 - Uniform (PSF) | $6^{\prime} 6^{\prime \prime}$ to 27' (Top) | 4' 6" | 20.0 | 40.0 | - | MAIN FLOOR |
| 2 - Uniform (PSF) | 0 to 6' 6" (Back) | $3 '$ | 25.0 | 60.0 | - | MAIN DECK w/ PAVERS |
| 3 - Uniform (PSF) | 0 to 27' (Front) | 6' 6" | 25.0 | 60.0 | - | MAIN DECK w/ PAVERS |
| 4 - Uniform (PLF) | 6' 6" to 27' (Top) | N/A | 80.0 | - | - | WALL |
| 5 - Uniform (PSF) | $66^{\prime \prime}$ to 27' (Top) | $12^{\prime \prime}{ }^{\prime \prime}$ | 15.0 | - | 25.0 | LOW ROOF |
| 6 - Point (lb) | 6' 8 3/4" (Back) | N/A | 3036 | 2378 | 1972 | Linked from: MB03, Support 2 |



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $4142 @ 11 / 2^{\prime \prime}$ | $7013(3.00$ ") | Passed (59\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | $2636 @ 1^{\prime} 6^{\prime \prime}$ | 14575 | Passed (18\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Pos Moment (Ft-lbs) | $8032 @ 4^{\prime} 11 / 2^{\prime \prime}$ | 41250 | Passed (19\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.022 @ 4^{\prime} 11 / 2^{\prime \prime}$ | 0.267 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Total Load Defl. (in) | $0.033 @ 4^{\prime} 11 / 2^{\prime \prime}$ | 0.400 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |

Member Length : 8' $3^{\prime \prime}$ System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length $\mathrm{L}=8^{\prime}$.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $3.00^{\prime \prime}$ | $3.00^{\prime \prime}$ | $1.77^{\prime \prime}$ | 1436 | 2706 | 4142 | Blocking |
| 2 - Stud wall - SPF | $3.00^{\prime \prime}$ | $3.00^{\prime \prime}$ | $1.77^{\prime \prime}$ | 1436 | 2706 | 4142 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $8^{\prime} 3^{\prime \prime} 0 / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $8^{\prime} 3 \mathrm{\prime} \mathrm{\prime} / \mathrm{c}$ |  |

$\bullet$-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $8^{\prime} 3^{\prime \prime}$ | N/A | 20.0 | -- |  |
| 1 - Uniform (PSF) | 0 to $8^{\prime} 3 "($ Front $)$ | $16^{\prime} 413 / 16^{\prime \prime}$ | 20.0 | 40.0 | Main Floor |

## Weyerhaeuser Notes




 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Mariam Soliman |  |
| BTL Engineering PS |  |
| (425) 814-8448 |  |
| mariam.soliman@btleng.net |  |

MAIN FLOOR, MB-06

## 1 piece(s) $4 \times 8$ DF No. 2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | 978 @ 0 | $2231(1.50 ")$ | Passed (44\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Shear (lbs) | $459 @ 83 / 4^{\prime \prime}$ | 3045 | Passed (15\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Moment (Ft-lbs) | $673 @ 1^{\prime} 41 / 2^{\prime \prime}$ | 2989 | Passed (22\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.003 @ 11^{\prime} 41 / 2^{\prime \prime}$ | 0.092 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Total Load Defl. (in) | $0.005 @ 11^{\prime} 41 / 2^{\prime \prime}$ | 0.138 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |

Member Length : 2' 9" System : Floor
Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  | Total | Available | Required | Dead | Floor Live | Factored |  |
| 1-Stud wall - SPF | $1.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 332 | 646 | 978 | Blocking |
| 2 - Stud wall - SPF | $1.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 332 | 646 | 978 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $2^{\prime} 9^{\prime \prime}$ o/c |  |
| Bottom Edge (Lu) | $2^{\prime} 9 \prime$ o/c |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $(\mathbf{1 . 0 0})$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to 2' 9" | N/A | 6.4 | -- |  |
| 1 - Uniform (PSF) | 0 to 2' $9^{\prime \prime}$ (Front) | $11^{\prime} 9 "$ | 20.0 | 40.0 | Main Floor |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Mariam Soliman |  |
| BTL Engineering PS |  |
| (425) 814-8448 |  |
| mariam.soliman@btleng.net |  |



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) | Member Length : 18' ${ }^{\prime \prime}{ }^{\prime \prime}$ <br> System : Floor <br> Member Type : Flush Beam <br> Building Use : Residential <br> Building Code : IBC 2018 <br> Design Methodology : ASD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 2596 @ 4" | 12272 (5.50") | Passed (21\%) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Shear (lbs) | 2199 @ 1'53/8" | 12053 | Passed (18\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Moment (Ft-lbs) | 11427 @ 9' $51 / 2{ }^{\prime \prime}$ | 29854 | Passed (38\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Live Load Defl. (in) | 0.291 @ 9' 5 1/2" | 0.456 | Passed (L/752) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |
| Total Load Defl. (in) | 0.444 @ 9' 5 1/2" | 0.913 | Passed (L/493) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |  |

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

| Supports | Bearing Length |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Total |  |
| 1-Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50^{\prime \prime}$ | $1.50^{\prime \prime}$ | 894 | 1703 | 2597 | Blocking |
| 2 - Stud wall - SPF | $5.50^{\prime \prime}$ | $5.50 "$ | $1.50^{\prime \prime}$ | 894 | 1703 | 2597 | Blocking |

- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $18^{\prime} 11 \mathrm{o} o / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $18^{\prime} 11 \mathrm{o} ~ / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location (Side) | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $18^{\prime} 11^{\prime \prime}$ | N/A | 19.5 | -- |  |
| 1 - Uniform (PSF) | 0 to $18^{\prime} 11^{\prime \prime}$ (Back) | $3^{\prime}$ | 25.0 | 60.0 | MAIN DECK w/ <br> PAVERS |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Mariam Soliman |  |
| BTL Engineering PS |  |
| (425) 814-8448 |  |
| mariam.soliman@btleng.net |  |
|  |  |

MAIN FLOOR, MB-08

## 1 piece(s) $4 \times 8$ DF No. 2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :--- | :---: | :---: | :--- | :---: | :--- |
| Member Reaction (lbs) | $205 @ 0$ | $3281(1.50 ")$ | Passed (6\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Shear (lbs) | $151 @ 83 / 4^{\prime \prime}$ | 3045 | Passed (5\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Moment (Ft-lbs) | $308 @ 3^{\prime} 11 / 2^{\prime \prime}$ | 2989 | Passed (10\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | $0.008 @ 3^{\prime} 11 / 2^{\prime \prime}$ | 0.208 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Total Load Defl. (in) | $0.013 @ 3^{\prime} 11 / 2^{\prime \prime}$ | 0.313 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |

Member Length : 6' 3" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  | Loads to Supports (lbs) |  |  |  | Accessories |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Total | Available | Required | Dead | Floor Live | Snow | Total |  |
| 1 - Trimmer - SPF | 1.50" | 1.50" | 1.50 " | 72 | 125 | 52 | 249 | None |
| 2 - Trimmer - SPF | 1.50" | 1.50" | 1.50" | 72 | 125 | 52 | 249 | None |


| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $6^{\prime} 3 \mathrm{lo} \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $6^{\prime} 3 \mathrm{o} o / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location | Tributary <br> Width | Dead <br> $\mathbf{( 0 . 9 0 )}$ | Floor Live <br> $\mathbf{( 1 . 0 0 )}$ | Snow <br> $(\mathbf{1 . 1 5 )}$ | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| 0 - Self Weight (PLF) | 0 to $6^{\prime} 3^{\prime \prime}$ | N/A | 6.4 | -- | -- |  |
| 1 - Uniform (PSF) | 0 to $6^{\prime} 3^{\prime \prime}$ | $8^{\prime \prime}$ | 25.0 | 60.0 | 25.0 | Main Deck w/ <br> Pavers |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Mariam Soliman |  |
| BTL Engineering PS |  |
| (425) 814-8448 |  |
| mariam.soliman@btleng.net |  |

MAIN FLOOR, MB-09

## 1 piece(s) $4 \times 8$ DF No. 2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 1169 @ 0 | 3281 (1.50") | Passed (36\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Shear (lbs) | 778 @ 8 3/4" | 3045 | Passed (26\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |
| Moment (Ft-lbs) | 1333 @ 2' 4 1/2" | 2989 | Passed (45\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | 0.022 @ 2' 4 1/2" | 0.158 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Total Load Defl. (in) | 0.032 @ 2' 4 1/2" | 0.237 | Passed (L/999+) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |

Member Length : 4' 9" System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored | Accessories |
| 1- Trimmer - SPF | $1.50^{\prime \prime}$ | $1.50 "$ | $1.50^{\prime \prime}$ | 374 | 748 | 312 | 1169 | None |
| 2 - Trimmer - SPF | $1.50 "$ | $1.50 "$ | $1.50^{\prime \prime}$ | 374 | 748 | 312 | 1169 | None |


| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $4^{\prime} 9 " \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $4^{\prime} 9 \mathrm{o} \circ \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location | Tributary Width | $\begin{gathered} \text { Dead } \\ \mathbf{( 0 . 9 0 )} \end{gathered}$ | Floor Live (1.00) | Snow (1.15) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 - Self Weight (PLF) | 0 to 4'9" | N/A | 6.4 | -- | -- |  |
| 1 - Uniform (PSF) | 0 to 4'9" | 5'3' | 25.0 | 60.0 | 25.0 | Main Deck w/ Pavers |
| 2 - Uniform (PLF) | 0 to 4' 9" | N/A | 20.0 | - | - | Wall |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.
The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

| ForteWEB Software Operator | Job Notes |
| :--- | :--- |
| Mariam Soliman |  |
| BTL Engineering PS |  |
| (425) 814-8448 |  |
| mariam.soliman@btleng.net |  |

MEMBER REPORT

## MAIN FLOOR, MB-10

## 1 piece(s) $4 \times 8$ DF No. 2



Drawing is Conceptual. All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

| Design Results | Actual @ Location | Allowed | Result | LDF | Load: Combination (Pattern) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Member Reaction (lbs) | 11101 @ $41 / 2^{\prime \prime}$ | 13125 (6.00") | Passed (85\%) | -- | $1.0 \mathrm{D}+0.75 \mathrm{~L}+0.75 \mathrm{~S}$ (All Spans) |
| Shear (lbs) | 758 @ 1' 1 1/4" | 3045 | Passed (25\%) | 1.00 | 1.0 D + 1.0 L (All Spans) |
| Moment (Ft-lbs) | 1631 @ 3' 9" | 2989 | Passed (55\%) | 1.00 | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |
| Live Load Defl. (in) | 0.014 @ 3' 9" | 0.225 | Passed (L/999+) | -- | 1.0 D + 1.0 L (All Spans) |
| Total Load Defl. (in) | 0.075 @ 3' 9" | 0.313 | Passed (L/999+) | -- | $1.0 \mathrm{D}+1.0 \mathrm{~L}$ (All Spans) |

Member Length : 7' ${ }^{\prime \prime}$ System : Wall Member Type : Header Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (5/16").
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

| Supports | Bearing Length |  |  |  | Loads to Supports (Ibs) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
|  | Total | Available | Required | Dead | Floor Live | Snow | Factored | Accessories |
| 1- Trimmer - SPF | $6.00 "$ | $6.00 "$ | $5.07 "^{\prime \prime}$ | 4910 | 4492 | 3763 | 11101 | None |
| 2 - Trimmer - SPF | $3.00 "$ | $3.00 "$ | $1.50^{\prime \prime}$ | 816 | 187 | 58 | 1002 | None |


| Lateral Bracing | Bracing Intervals | Comments |
| :--- | :---: | :--- |
| Top Edge (Lu) | $7^{\prime} 3 \mathrm{lo} \mathrm{o} / \mathrm{c}$ |  |
| Bottom Edge (Lu) | $7^{\prime} 3 \mathrm{o} o / \mathrm{c}$ |  |

-Maximum allowable bracing intervals based on applied load.

| Vertical Loads | Location | Tributary Width | $\begin{gathered} \text { Dead } \\ (0.90) \end{gathered}$ | Floor Live <br> (1.00) | $\begin{aligned} & \text { Snow } \\ & \text { (1.15) } \end{aligned}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 - Self Weight (PLF) | 0 to 7' 3" | N/A | 6.4 | -- | -- |  |
| 1 - Uniform (PSF) | 0 to 7' ${ }^{\prime \prime}$ | 8" | 20.0 | 40.0 | 25.0 | Main Floor |
| 2 - Uniform (PLF) | 0 to 7' ${ }^{\prime \prime}$ | N/A | 100.0 | - | - | Wall |
| 3 - Uniform (PSF) | 0 to 7' ${ }^{\prime \prime}$ | 8" | 20.0 | 40.0 | - | Upper Floor |
| 4 - Uniform (PLF) | 0 to 7' ${ }^{\prime \prime}$ | N/A | 100.0 | - | - | Wall |
| 5 - Point (lb) | $41 / 2^{\prime \prime}$ | N/A | 1816 | 4292 | - | Linked from: UB02, Support 1 |
| 6 - Point (lb) | $41 / 2^{\prime \prime}$ | N/A | 2220 | - | 3700 | Pt Loaf From RB02 |

## Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## Lateral

| Code: | 2018 IBC |
| :--- | :--- |
|  | Allowable Stress Design (ASD) |


| Risk Category: | II - Other Structures | $\checkmark$ | Table 1.5-1 |
| :---: | :---: | :---: | :---: |
| Snow Importance Factor | $I_{s}=1.00$ | Table 1.5-2 |  |
| Ice Importance Factor - Thickness | $l_{i}=1.00$ | Table 1.5-2 |  |
| Ice Importance Factor - Wind | $I_{w}=1.00$ | Table 1.5-2 |  |
| Seismic Importance Factor | $I_{\text {e }}=1.00$ | Table 1.5-2 |  |
| Spectral Response, Short Period | $S_{S}=1.454$ | (Mapped) |  |
| Spectral Response, 1-s Period | $S_{1}=0.502$ | (Mapped) |  |
| Site Class based on Geotechnical Report | $\nabla$ |  |  |
| Site Class: | D | $\checkmark$ | Table 20.3-1 |
| Site Coefficient | $F_{a}=1.01$ | Table 11.4-1 |  |
| Site Coefficient | $F_{v}=1.80$ | Table 11.4-2 |  |

## Structural Systems:

Light framed walls with shear panels


Basic Wind Speed:
Exposure to Wind:
Topographical Factor
Exposure C
$K_{Z T}=1.00$$\stackrel{\stackrel{\mathrm{mph}}{\boldsymbol{\nabla}}}{ }$ Section 26.7.3

Date: 3/4/2024
$\qquad$

7466 E Mercer Way


Date: 3/4/2024
Page: $\qquad$ L1.2

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## Ramaiyah Residence

$$
\begin{aligned}
S_{M S} & =F_{a} S_{S} \\
& =1.467 \\
S_{D S} & =2 / 3 S_{M S} \\
& =0.978
\end{aligned}
$$

## Seismic Design Category:

Short Period -- D
1-Second Period -- D
(Eq. 11.4-1)

$$
\begin{aligned}
S_{M 1} & =F_{v} S_{1} \\
& =0.903
\end{aligned}
$$

(Eq. 11.4-3)

Structure Period and Weight:

$$
\begin{array}{rlr}
C_{t} & =0.020 \quad \text { Table 12.8-2 } \\
x & =0.75 &
\end{array}
$$

Building Height (Mean Roof), $h_{n}=30 \mathrm{ft}$
Approximate Fundamental Period, $T_{a}=C_{t}\left(h_{n}\right)^{\times}$(Eq. 12.8-7)
$T=T_{a}=0.25$
$T_{L}=6$
(Figs. 22-14 thru 22-17)
Calculated design base shear:

$$
\begin{align*}
V & =C_{s} W  \tag{Eq.12.8-1}\\
C_{s} & =\frac{S_{D S}}{\left(\frac{R}{I_{e}}\right)}  \tag{Eq.12.8-2}\\
C_{s} & =0.151
\end{align*}
$$

The total design base shear need not exceed:
(Eq. 12.8-3)

$$
\begin{array}{rlll}
\text { for } T \leqq T_{L} & C_{s} & =\frac{S_{D 1}}{T\left(\frac{R}{I_{e}}\right)} & \\
& & \text { for } T>T_{L} & C_{s}=\frac{S}{T} \\
C_{s} & =0.366 & & C_{s}=8.6 \\
C_{s} & =0.366 & T \leq T L & \\
C_{s} & =0.549 & 1.5 \text { times } C s \text { in accordance with 11.4.8 }
\end{array}
$$

The total design base shear shall not be less than:

$$
\begin{align*}
& C_{s}=0.044 S_{D S} I_{e} \geq 0.01  \tag{Eq.12.8-5}\\
& C_{s}=0.043
\end{align*}
$$

nor where $S_{1} \geq 0.6 \mathrm{~g}$ :

$$
\begin{align*}
C_{s} & =0.5 S_{1} /\left(\mathrm{R} / \mathrm{I}_{\mathrm{e}}\right)  \tag{Eq.12.8-6}\\
C_{s} & =0.000 \\
C_{s} & =0.151 \\
V & =0.151 \mathrm{~W}
\end{align*}
$$

Date: 3/4/2024
$\qquad$

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436
Phone: 425-814-8448
Fax: 425-821-2120
Ramaiyah Residence
Revision Date:
1/11/2021
7466 E Mercer Way

| $\begin{aligned} & \rho_{S}=\lambda K_{Z T} \rho_{\text {S }} \\ & \lambda=1.39 \\ & K_{Z T}=1.00\end{aligned}$ | (28.5-1) | Exposure = | C |  |
| :---: | :---: | :---: | :---: | :---: |
|  | (Fig. 28.5.1) | Mean Roof Ht hn (ft) = | 30 ft |  |
|  | (Section 26.8) | $\mathrm{a}(\mathrm{roof})=$ | 3.7 ft |  |
|  |  | a (upper/main floor) = | 4.3 ft |  |
|  |  | Basic Wind Speed = Roof Angle = | $\begin{aligned} & 100 \mathrm{mph} \\ & 3 \end{aligned}$ |  |




Date: $3 / 4 / 2024$
Page: $\qquad$

## Ramaiyah Residence

Revision Date:
1/11/2021 7466 E Mercer Way

## Vertical Distribution of Lateral Forces

Base Shear:

$$
V=\quad 25.34 \mathrm{kips}
$$

Shear Walls:

$$
\begin{equation*}
F_{x}=C_{v x} V \tag{Eq.12.8-12}
\end{equation*}
$$

(Eq. 12.8-11)

$$
C_{v x}=\frac{w_{x} h_{x}^{k}}{\sum_{i=1}^{n} w_{i} h_{i}^{k}}
$$

Diaphragms:

$$
F_{p x}=\left(\sum_{i=x}^{n} F_{i} / \sum_{i=x}^{n} w_{i}\right)\left(w_{p x}\right) \ldots[E q \cdot 12.10-1] \quad \begin{aligned}
& F_{p x}=0.2 S_{D S} I_{e} w_{p x} \ldots[E q \cdot 12 \cdot 10-2](\mathrm{min}) \\
& F_{p x}=0.4 S_{D S} I_{e} w_{p x} \ldots[E q \cdot 12 \cdot 10-3] \text { (max) }
\end{aligned}
$$

|  | Strength Design Seismic Forces (E) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Floor Level (from base) | Height, <br> $h_{x}$ <br> (ft) | $\begin{gathered} \text { Story } \\ \text { Weight, } \mathrm{w}_{\mathrm{x}} \\ \text { (Kips) } \end{gathered}$ | $\begin{gathered} w_{x} h_{x} \\ \text { (ft-Kips) } \end{gathered}$ | $\begin{aligned} & \text { Lateral } \\ & \text { Force, } \\ & \mathrm{F}_{\mathrm{x}} \\ & \text { (Kips) } \\ & \hline \end{aligned}$ | Story Shear, <br> $\Sigma F_{\mathrm{x}}$ <br> (Kips) | Story Moment (ft-Kips) | $\begin{aligned} & \text { Portion of } \\ & \text { Weight at } i \text {, } \\ & \sum \mathrm{w}_{i} \\ & (\mathrm{Kips}) \end{aligned}$ | Diaphragm <br> Force, <br> Fpx <br> (Kips) |
| Roof | 19.0 | 32.82 | 624 | 6.95 | 6.95 | 59 | 33 | 6.95 |
| Floor 2 | 10.5 | 60.00 | 630 | 7.02 | 13.97 | 206 | 93 | 11.74 |
| Floor 1 |  | 75.59 |  | 11.38 | 25.34 |  | 168 | 14.79 |
| Totals $\quad \mathrm{W}=168.41 \mathrm{Kips}$ |  |  |  |  |  |  |  |  |
|  |  | $\sum w_{x} \mathrm{~h}_{\mathrm{x}}=$ | 1254 | ft-Kips |  |  |  |  |


|  | Strength Design Wind Forces (W) |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Floor Level (from base) | $\begin{gathered} \text { Lateral } \\ \text { Force } \\ \mathrm{N} / \mathrm{S}, \mathrm{H}_{\mathrm{x}} \\ \text { (Kips) } \\ \hline \end{gathered}$ | Story Shear N/S, ¿Hx (Kips) | $\begin{gathered} \hline \text { Lateral } \\ \text { Force } \\ \text { E/W, } \mathrm{H}_{\mathrm{x}} \\ (\text { (Kips) } \end{gathered}$ | Story Shear <br> $\mathrm{E} / \mathrm{W}, \Sigma \mathrm{H}_{\mathrm{x}}$ (Kips) |
| Roof | 3.09 | 3.09 | 2.82 | 2.82 |
| Floor 2 | 6.40 | 9.49 | 7.04 | 9.86 |
| Floor 1 |  |  | 7.42 | 17.28 |


|  | Diaphragm (ASD) |  |  |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { Selsmic, } \\ & {[0.7 \mathrm{E}]} \end{aligned}$ (kips) | WIndN/S <br> [0.6W] <br> (kips) | WVIndEIVV <br> [0.6W] <br> (kips) |
| Roof | 4.86 | 1.85 | 1.69 |
| Floor 2 | 8.22 | 3.84 | 4.22 |
| Floor 1 | 10.35 |  | 4.45 |


|  | Shear Walls (ASD) |  |  |
| :---: | :---: | :---: | :---: |
|  | Seismic, $[0.7 \mathrm{E}]$ <br> (kips) | Wind N/S <br> [0.6W] <br> (kips) | WindE/W $[0.6 \mathrm{~W}]$ (kips) |
| Floor 2 | 4.86 | 1.85 | 1.69 |
| Floor 1 | 4.91 | 3.84 | 4.22 |
| Basement | 7.96 |  | 4.45 |

Date: 3/4/2024
Page: $\qquad$

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## Lateral

ENGINEERING
Roof Diaphragm

(1)
(E) $1125 \# / 25.75^{\prime}=26 \mathrm{plf}$
(2)
(E) 1305 \#/22' $=59$ plf
(3) (E) $1305 \# / 16^{\prime}=82$ plf
(W) 430 \#/25.75' =21 plf
(A) (E) $2340 \# / 17^{\prime}=138 \mathrm{plf}$
(W) 845 \#/17' $=50 \mathrm{plf}$
(B)
(E) 2340 \#/37' $=63$ plf
(W) 845 \#/37' = 23 plf

UNBLOCKED

Project: Ramaiyah Residence
Designed By: $\qquad$ MS Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page:

ENGINEERING
Upper Floor Diaphragm

(1)
(E) 1895 \#/44'=43 plf
(2)
(E) $2215 \# / 16.5^{\prime}=134 \mathrm{plf}$
(3) (E) $2215 \# / 16^{\prime}=138$ plf
(W) 890 \#/44' $=20$ plf
(W) 1030 \#/16.5' = 62 plf
(W) 1030 \#/16' = 64 plf
(A)
(E) $(45 \%) 4110 \# / 14.417^{\prime}=128 \mathrm{plf}$
(B)
(E) $4110 \# / 37^{\prime}=111 \mathrm{plf}$
(W) ( $45 \%$ )2110 \#/14.417' = 66 plf
(W) 2110 \#/37' = 57 plf

UNBLOCKED

Project: Ramaiyah Residence
Designed By: $\qquad$ Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page:

ENGINEERING
Main Floor Diaphragm

(1) (E) $2587.5 \# / 44^{\prime}=117 \mathrm{plf}$
(2)
(E) 2587.5 \#/18.33' $=141 \mathrm{plf}$
(3) (E) 2587.5 \#/26.92' $=96$ plf
(E) 2625 \#/26.92' $=98$ plf
(W) 1525\#/26.92' = 57 plf
(A)
(E) $(50 \%) 5175 \# / 17^{\prime}=152$ plf
(B)
(E) $5175 \# / 37^{\prime}=140$ plf
(W) $(50 \%) 2225$ \#/17' $=65$ plf
(W) $2225 \# / 37^{\prime}=60$ plf
UNBLOCKED

## Project: Ramaiyah Residence

Designed By: $\qquad$ Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page:

ENGINEERING Fax: 425-821-2120



(E) $2455 \#+2430 \#=4885 \#$ (W) 2110 \# + 845 \# =2955 \#

## (B)

(E) 2455 \# + 2430 \# =4885 \# (W) 2110 \# + 845 \# =2955 \#

(3)

(E) $1320 \#+1305 \#=2625 \#$
(W) 1030 \# + 495 \# = 1525 \#

Project:Ramaiyah Residence
Designed By: $\qquad$ MS Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: $\qquad$ L2.4

(E) $3980 \#+4885 \#=8865 \#$
(W) 2845 \#
$\qquad$ MS Date: $\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: L2.5

ENGINEERING Fax: 425-821-2120






Project: Ramaiyah Residel
Designed By: $\qquad$ MS Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: L2.6


$D=0.6 \times 260$ plf $\times 19.67^{\prime}=306$
$E=4885 \# / 16.5^{\prime}=296$
$W=2845 \# / 16.5^{\prime}=172$
h/b<2, <450-p
P1-3

9'x10 psf +16.75 ' x $20 \mathrm{psf}=42$
D $=0.6 \times 425$ plf $\times 10.58$ = 2698
D $=0.6 \times 425$ plf $\times 8$ ' $=2040$ \#

E = 8865 \# / 18.58' $=47{ }^{\circ}$
$W=2845 \# / 18.58 '=15 \approx$
h/b<2, <590-p

| $\downarrow$ |
| :---: |
| 10.58 <br> $\mathrm{E}=2947 \#$ <br> $\mathrm{~W}=29 \mathrm{\#}$ <br> HDU4-SDS2.5 |



P1-2
Project:Ramaiyah Reside। $\qquad$ Date: $\qquad$
$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: L2.7

ENGINEERING Fax: 425-821-2120


## Project: Ramaiyah Reside|

Designed By: $\qquad$ Date: $\qquad$
Project Number: $\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: $\qquad$

ENGINEERING


## Project: Ramaiyah Residel

 Designed By:__MS Date: $\qquad$$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: L2.9

ENGINEERING


## Project: Ramaiyah Residel

 Designed By:__MS Date: $\qquad$$\qquad$ Client: $\qquad$ Scale: $\qquad$ Page: L2.10

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## 2018 IBC/SDPWS 2015 - Diaphragms (8d Nailing)

Table 4.2C Nominal Unit Shear Capacities for Wood-Frame Diaphragms


Table 4.2A Nominal Unit Shear Capacities for Wood-Frame Diaphragms
Blocked Wood Structural Panel Diaphragms ${ }^{1,2,3,4,5}$


| $\underset{\substack{\text { Shatating } \\ \text { Grade }}}{ }$ | Comman Nail Size |  | $\begin{array}{\|c} \text { Minimum } \\ \text { Nominal } \\ \text { Panal } \\ \text { Phanel } \\ \text { Thiches } \\ \text { (in.) } \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Structural 1 | ${ }^{\text {cd }}$ | 1-1/4 | 546 | ${ }_{3}^{2}$ |
|  | sd | 1-3/18 | $3 / 8$ | ${ }_{3}^{2}$ |
|  | 10d | 1-1/2 | 15/32 | ${ }^{2}$ |
| Sheathing and Single-Fioor | 6d | 1-1/4 | 5/16 | ${ }^{2}$ |
|  |  |  | $3 / 8$ | ${ }_{3}^{2}$ |
|  | 日 ${ }^{\text {d }}$ | 1-3/6 | з1 | ${ }_{3}^{2}$ |
|  |  |  | 7116 | 2 3 |
|  |  |  | 1533 | ${ }_{3}^{2}$ |
|  | tod | 1-1/2 | $15 / 32$ | ${ }_{3}^{2}$ |
|  |  |  | $18 / 32$ | ${ }_{3}^{2}$ |

# 2018 IBC/SDPWS 2015 - Shear Wall Schedule 

7/16"OSB; 0.131" $\phi$ Nails; SPF or HF Studs @ 16"oc

Table 4.3A Nominal Unit Shear Capacities for Wood-Frame Shear Walls ${ }^{1,3,6,7}$


1. Nominal unit shear capacities shall be adjusted in accordance with 4.3 .3 to determine ASD allowable unit shear capacity and LRFD factored unit resistance. For general construction requirements see 4.3.6. For specific requirements, see 4.3.7.1 for wood structural panel shear walls, 4.3.7.2 for particleboard shear walls, and 4.3.7.3 for fiberboard shear walls. See Appendix A for common and box nail dimensions.
2. Shears are permitted to be increased to values shown for $15 / 32$ inch (nominal) sheathing with same nailing provided (a) studs are spaced a maximum of 16 inches on center, or (b) panels are applied with long dimension across studs.
3. For species and grades of framing other than Douglas-Fir-Larch or Southern Pine, reduced nominal unit shear capacities shall be determined by multiplying the tabulated nominal unit shear capacity by the Specific Gravity Adjustment Factor $=[1-(0.5-\mathrm{G})]$, where $\mathrm{G}=$ Specific Gravity of the framing lumber from the NDS (Table 12.3.3A). The Specific Gravity Adjustment Factor shall not be greater than 1 .
4. Apparent shear stiffness values $\mathrm{G}_{\mathrm{m}}$ are based on nail slip in framing with moisture content less than or equal to $19 \%$ at time of fabrication and panel stiftness values for shear walls constructed with either OSB or 3-ply plywood panels. When 4-ply or 5-ply plywood panels or composite panels are used, $\mathrm{G}_{3}$ values shall be permitted to be multiplied by 1.2 .
5. Where moisture content of the framing is greater than $19 \%$ at time of fabrication, $G_{2}$ values shal be multiplied by 0.5 .
6. Where panels are applied on both faces of a shear wall and nail spacing is less than $6^{\prime \prime}$ on center on either side, panel joints shall be offset to fall on different framing members as shown below. Alternatively, the width of the nailed face of framing members shall be $3^{\prime \prime}$ nominal or greater at adjoining panel edges and nails at all panel edges shall be staggered.
7. Galvanized nails shall be hot-dipped or tumbled.
8. Reduction Factor $=2$
9. 16 "oc studs - use values for $15 / 32$
10. $G=0.42$ (SPF or Hem Fir)... Adjustment Factor $=[1-(0.5-0.42)]=0.92$

| Wall <br> Type | Blocked | Sheathing <br> (1) or (2) Sides | Nail Spacing Edge/Intermediate | Framing | Sill Plate | Seismic Capacity $\mathrm{h} / \mathrm{b}_{\mathrm{s}}=2$ | Seismic Capacity $h / b_{s}=3.5$ | Wind Capacity $\mathrm{h} / \mathrm{b}_{\mathrm{s}}=2$ | Wind Capacity $h / b_{s}=3.5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| P1-6 | Y | 1 | 6"/12" Oc | $2 x$ | 2 x | 240-plf | 194-plf | 335-plf | 272-plf |
| P1-4 | Y | 1 | 4"/12" oc | 2 x | 2 x | 350-plf | 284-plf | 490-plf | 398-plf |
| P1-3 | Y | 1 | 3"/12" oc | $2-2 x$ | $2 x$ | 450-plf | 366-plf | 630-plf | 512-plf |
| P1-2 | Y | 1 | 2"12" oc | $2-2 x$ | 2 x | 590-plf | 478-plf | 820-plf | 669-plf |
| P2-4 | Y | 2 | $\begin{gathered} 4 " / 12 " \text { оc, } \\ \text { ea.side } \\ \hline \end{gathered}$ | $2-2 x$ | $3 x$ | 700-plf | 568-plf | 980-plf | 796-plf |
| P2-3 | Y | 2 | $\begin{gathered} 3 " / 12 " \text { oc, } \\ \text { ea. side } \\ \hline \end{gathered}$ | $2-2 x$ | $3 x$ | 900-plf | 733-plf | 1260-plf | 1024-plf |
| P2-2 | Y | 2 | $\begin{gathered} \text { 2"/12" oc, } \\ \text { ea. side } \end{gathered}$ | $2-2 x$ | $3 x$ | 1180-plf | 957-plf | 1640-plf | 1338-plf |

## 2018 IBC/NDS 2015 - Shear Wall Framing Clips

|  | Model No. | Type of Connection | Fasteners (in.) | Direction of Load | DF/SP Allowable Loads |  |  | SPF/HF Allowable Loads |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \text { Floor } \\ & (100) \end{aligned}$ | $\begin{aligned} & \text { Roof } \\ & (125) \end{aligned}$ | (160) | Floor <br> (100) | $\begin{aligned} & \text { Roof } \\ & (125) \end{aligned}$ | (160) |
| SS | A34 | 1 | (8) $0.131 \times 11 / 2$ | $\mathrm{F}_{1}$ | 395 | 465 | 465 | 340 | 400 | 400 |
|  |  |  |  | $\mathrm{F}_{2}{ }^{6}$ | 395 | 430 | 430 | 340 | 370 | 370 |
|  |  | 1 | (8) $\# 9 \times 111 / 2 \mathrm{SD}$ | $\mathrm{F}_{1}$ | 640 | 640 | 640 | 550 | 550 | 550 |
|  |  |  |  | $\mathrm{F}_{2}$ | 495 | 495 | 495 | 425 | 425 | 425 |
|  |  |  |  | Uplift | 240 | 240 | 240 | 170 | 170 | 170 |
| SS | A35 | 2 | (9) $0.131 \times 11 / 2$ | $\mathrm{A}_{1}$ | 295 | 350 | 350 | 255 | 300 | 300 |
|  |  |  |  | E | 295 | 360 | 385 | 255 | 310 | 330 |
|  |  |  |  | $\mathrm{C}_{1}$ | 185 | 185 | 185 | 160 | 160 | 160 |
|  |  | 3 | (12) $0.131 \times 1 \frac{1}{2}$ | $\mathrm{A}_{2}$ | 295 | 325 | 325 | 255 | 280 | 280 |
|  |  |  |  | $\mathrm{C}_{2}$ | 295 | 330 | 330 | 255 | 285 | 285 |
|  |  |  |  | D | 225 | 225 | 225 | 195 | 195 | 195 |
|  |  | 4 | (12) $0.131 \times 1 \frac{1}{2}$ | $\mathrm{F}_{1}$ | 590 | 650 | 650 | 510 | 560 | 560 |
|  |  |  |  | $\mathrm{F}_{2}{ }^{6}$ | 590 | 670 | 670 | 510 | 575 | 575 |
|  |  | 5 | (12) PH612I | $\mathrm{F}_{1}$ | 420 | 420 | 420 | 360 | 360 | 360 |
|  | LTP4 | 6 | (12) $0.131 \times 1 \frac{1}{2}$ | G | 580 | 625 | 625 | 500 | 540 | 540 |
|  |  |  |  | H | 580 | 525 | 525 | 500 | 450 | 450 |
|  | LTP5 | 7 | (12) $0.131 \times 1 \frac{1}{2}$ | G | 580 | 565 | 565 | 500 | 485 | 485 |
|  |  |  |  | H | 545 | 490 | 490 | 470 | 420 | 420 |

1. Allowable loads are for one angle. When angles are installed on each side of the joist, the minimum joist thickness is $3^{\prime \prime}$.
2. Some illustrations show connections that could cause cross-grain tension or bending of the wood during loading if not reinforced sufficiently. In this case, mechanical reinforcement should be considered.
3. LTP4 can be installed over $3 / 8^{\prime \prime}$ wood structural panel sheathing with $0.131^{\prime \prime} \times 11 / 2^{\prime \prime}$ nails and achieve 0.72 of the listed load, or over $1 / 2^{\prime \prime}$ sheathing and achieve 0.64 of the listed load. $0.131^{\prime \prime} \times 21 / 2^{\prime \prime}$ nails will achieve $100 \%$ load.
4. LTP4 satisfies the IRC continuously sheathed portal frame (CS-PF) framing anchor requirements when installed over raised wood floor framing per Figure R602.10.6.4.
5. The LTP5 may be installed over wood structural panel sheathing up to $1 / 2^{\prime \prime}$ thick using $0.131^{\prime \prime} \times 11 / 2^{\prime \prime}$ nails with no reduction in load.
6. Connectors are required on both sides to achieve $F_{2}$ loads in both directions.
7. Fasteners: Nail dimensions in the table are diameter by length. SD screws are Simpson Strong-Tie ${ }^{\circledR}$ Strong-Drive ${ }^{\circledR}$ screws. PH612I is a pan-head \#6 x $1 / 2^{\prime \prime}$ screw available from Simpson Strong-Tie. For additional information, see Fastener Types and Sizes Specified for Simpson Strong-Tie Connectors.

| Wall Type | Capacity | A35 Capacity | A35 Spacing | LTP4 Capacity | LTP4 Spacing |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P1-6U | 144-plf (E) | 560\# | 44 " oc | 540\# | 44" oc |
| P1-6 | 240-plf (E) | 560\# | 27 " oc | 540\# | $27^{\prime \prime}$ oc |
| P1-4 | 350-plf (E) | 560\# | $18^{\prime \prime}$ oc | 540\# | 18 " oc |
| P1-3 | 450-plf (E) | 560\# | $14^{\prime \prime}$ oc | 540\# | $14^{\prime \prime}$ oc |
| P1-2 | 820-plf (W) | 560\# | $71 / 2{ }^{\prime \prime}$ oc | 540\# | $71 / 2{ }^{\prime \prime}$ oc |
| P2-4 | 700-plf (E) | 560\# | 9" oc | 540\# | LTP5 18" oc + A35 18" oc |
| P2-3 | 900-plf (E) | 560\# | 7" oc | 540\# | LTP5 14" oc + A35 14" oc |
| P2-2 | 1640-plf (W) | 560\# | 2 rows 8" oc | 540\# | $\begin{gathered} \hline \text { LTP5 8" oc + } \\ \text { A35 8" oc } \end{gathered}$ |

## 2018 IBC/NDS 2018 - Shear Wall Bolts

Table 12E BOLTS: Reference Lateral Design Values, Z, for Single Shear (two member) Connections ${ }^{\mathbf{1 2}, 2,3,4}$
for sawn lumber or SCL to concrete

| Thickness |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | $\begin{array}{r} \mathbf{Z}_{11} \\ \text { lbs. } \end{array}$ | $\begin{gathered} \mathbf{z}_{\boldsymbol{1}} \\ \text { libs. } \end{gathered}$ | $\begin{gathered} \mathbf{z}_{\\|} \\ \text {lbs. } \end{gathered}$ | $\begin{gathered} \mathbf{Z}_{1} \\ \text { libs. } \end{gathered}$ | $\begin{array}{r} \mathbf{Z}_{\text {II }} \\ \text { lbs. } \\ \hline \end{array}$ | $\begin{array}{r} \mathbf{Z}_{\perp} \\ \text { lbs. } \end{array}$ | $\begin{array}{r} \mathbf{Z}_{\text {II }} \\ \text { lbs. } \\ \hline \end{array}$ | $\begin{array}{r} \mathbf{Z}_{1} \\ \text { lbs. } \end{array}$ | $\begin{array}{r} \mathbf{Z}_{11} \\ \text { lbs. } \\ \hline \end{array}$ | $\begin{gathered} \mathbf{Z}_{\perp} \\ \text { lbs. } \end{gathered}$ |
| 6.0 and greater | 1-1/2 | 1/2 | 590 | 340 | 590 | 340 | 550 | 310 | 540 | 290 | 530 | 290 |
|  |  | 5/8 | 860 | 420 | 850 | 410 | 810 | 350 | 800 | 330 | 780 | 320 |
|  |  | $3 / 4$ | 1200 | 460 | 1190 | 450 | 1130 | 370 | 1120 | 360 | 1100 | 350 |
|  |  | $7 / 8$ | 1580 | 500 | 1540 | 490 | 1360 | 410 | 1330 | 390 | 1280 | 370 |
|  |  | 1 | 1800 | 540 | 1760 | 530 | 1560 | 440 | 1520 | 420 | 1460 | 410 |
|  | 1-3/4 | 1/2 | 640 | 360 | 630 | 350 | 580 | 320 | 580 | 310 | 560 | 310 |
|  |  | $5 / 8$ | 910 | 490 | 900 | 480 | 840 | 400 | 830 | 380 | 810 | 370 |
|  |  | 3/4 | 1230 | 540 | 1220 | 530 | 1160 | 430 | 1140 | 420 | 1120 | 410 |
|  |  | $7 / 8$ | 1630 | 580 | 1610 | 570 | 1540 | 470 | 1520 | 460 | 1490 | 430 |
|  |  | 1 | 2090 | 630 | 2060 | 610 | 1820 | 510 | 1770 | 490 | 1710 | 470 |
|  | 2-1/2 | 1/2 | 730 | 410 | 730 | 400 | 700 | 360 | 690 | 340 | 680 | 340 |
|  |  | 5/8 | 1070 | 540 | 1060 | 530 | 980 | 480 | 960 | 470 | 940 | 460 |
|  |  | 3/4 | 1400 | 710 | 1380 | 700 | 1290 | 620 | 1270 | 600 | 1240 | 580 |
|  |  | $7 / 8$ | 1790 | 830 | 1770 | 810 | 1660 | 680 | 1640 | 660 | 1600 | 610 |
|  |  | 1 | 2230 | 900 | 2210 | 880 | 2080 | 730 | 2060 | 700 | 2030 | 680 |
|  | 3-1/2 | 1/2 | 730 | 470 | 730 | 470 | 700 | 430 | 690 | 410 | 690 | 400 |
|  |  | 5/8 | 1140 | 620 | 1140 | 610 | 1090 | 550 | 1080 | 530 | 1070 | 520 |
|  |  | 3/4 | 1650 | 780 | 1640 | 770 | 1540 | 680 | 1510 | 670 | 1470 | 660 |
|  |  | $7 / 8$ | 2100 | 960 | 2070 | 950 | 1910 | 870 | 1880 | 850 | 1840 | 820 |
|  |  | 1 | 2550 | 1190 | 2520 | 1180 | 2340 | 1020 | 2310 | 980 | 2260 | 950 |

1. Tabulated lateral design values, $\mathrm{Z}_{4}$ for bolted connections shall be multiplied by all applicable adjustment factors (see Table 11.3.1)
2. Tabulated lateral design values, Z , are for "full-body diameter" bolts (see Appendix Table L1) with bolt bending yield strength, $\mathrm{F}_{\mathrm{yb}}$ of 45,000 psi.
3. Tabulated lateral design values, $Z$, are based on dowel bearing strength, $F_{t}$, of $7,500 \mathrm{psi}$ for concrete with minimum $f_{c}^{\prime}=2,500 \mathrm{psi}$
4. Six inch anchor embedment assumed.


| $\begin{aligned} & \text { Wall } \\ & \text { Type } \\ & \hline \end{aligned}$ | Capacity | $\begin{gathered} \text { Sill } \\ \text { Plate } \\ \hline \end{gathered}$ | Single $5 / 8^{\prime \prime} \phi$ <br> Bolt Capacity | 5/8" $\phi$ Anchor <br> Bolt Spacing | MASAP Anchor Capacity | MASAP Anchor Spacing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pl-6U | 144-plf (E) | 2 x | 1376\# | $60^{\prime \prime}$ oc | 1060\# | $60^{\prime \prime}$ oc |
| P1-6 | 240-plf (E) | 2 x | 1376\# | $60^{\prime \prime}$ oc | 1060\# | $52^{\prime \prime}$ oc |
| P1-4 | 350-plf (E) | 2 x | 1376\# | $46^{\prime \prime}$ oc | 1060\# | $36^{\prime \prime}$ oc |
| P1-3 | 450-plf (E) | 2 x | 1376\# | $36^{\prime \prime}$ oc | 1060\# | $28^{\prime \prime}$ oc |
| P1-2 | 820-plf (W) | 2 x | 1376\# | $20^{\prime \prime}$ oc | 1250\# | 18 " oc |
| P2-4 | 700-plf (E) | 3 x | 1712\# | $28^{\prime \prime}$ oc | 875\# | $15^{\prime \prime}$ oc |
| P2-3 | 900-plf (E) | 3 x | 1712\# | $22^{\prime \prime}$ oc | 875\# | 11" oc |
| P2-2 | 1640-plf (W) | 3 x | 1712\# | 12" oc | 1005\# | 7" oc |


| SHEAR WALL SCHEDULE <br> (IN ACCORDANCE w/ ANSI/AF\&PA SDPWS-2015 SECTION 4.3) Updated 1/20/2021 |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { WALL } \\ & \text { TYPE } \end{aligned}$ | SHEATHING | PANEL EDGE NAILING (2) | MINIMUM WIDTH OF NAILED FACE OF FRAMING @ ADJOINING PANEL EDGES (3) |  | MUDSILLPLATE | FACE NAILING(4) | FRAMING CLIPS <br> (5) | ANCHORAGE TO CONCRETE <br> (6) |  | SEISMIC CAPACITY$\begin{gathered} h / b=2 \\ h / b=3.5 \end{gathered}$ | WIND CAPACITY$\begin{gathered} h / b=2 \\ h / b=3.5 \end{gathered}$ |
|  |  |  | SINGLE MEMBER | BUILT-UP MEMBER |  |  |  | ANCHOR BOLTS | MUDSILL ANCHORS |  |  |
| P1-6 | 1 SIDE | $6^{\prime \prime}$ oc | 2 x | 2 x | 2 x | $6{ }^{\text {" oc }}$ | $\begin{aligned} & \text { A35 @ } 27^{\prime \prime} \text { oc } \\ & \text { LTP4@ } 27^{\prime \prime} \text { oc } \end{aligned}$ | 5/" ${ }^{\text {¢ }}$ @ 60" oc | MASAP @ 52" oc | $\begin{aligned} & 240 \text {-plf } \\ & \text { 194-plf } \end{aligned}$ | $\begin{aligned} & \text { 240-plf } \\ & \text { 194-plf } \end{aligned}$ |
| P1-4 | 1 SIDE | $4{ }^{\text {" oc }}$ | 2 x | 2 x | 2 x | 4 " oc | $\begin{aligned} & \text { A35 @ } 18^{\prime \prime} \text { oc } \\ & \text { LTP4 @ } 188^{\prime \prime} \text { oc } \end{aligned}$ |  | MASAP @ 36" oc | 350-plf 284-plf | $\begin{aligned} & 350-\mathrm{plf} \\ & 284 \text {-plf } \end{aligned}$ |
| P1-3 | 1 SIDE | $3{ }^{\text {" oc }}$ | 3 x | (2)2x | 2 x | $3{ }^{\text {" oc }}$ | $\begin{gathered} \text { A35@14" oc } \\ \text { or } \\ \text { LTP4 @ } 14 \text { " oc } \\ \hline \end{gathered}$ | 5/" ${ }^{\text {¢ @ 36" oc }}$ | MASAP @ 28" oc | $\begin{aligned} & 450 \text {-plf } \\ & 366 \text {-plf } \end{aligned}$ | $\begin{aligned} & 450-\mathrm{plf} \\ & 366 \text {-plf } \end{aligned}$ |
| P1-2 | 1 SIDE | $2{ }^{\text {" oc }}$ | 3 x | (2)2x | 2 x | $2{ }^{\prime \prime}$ oc | $\begin{aligned} & \text { A35 @ } 7 K_{2} \text { "oc } \\ & \text { LTP4 @ } 7 K_{2 \prime \prime} \text { oc } \end{aligned}$ | 5/" ${ }^{\text {¢ }}$ @ 20" oc | MASAP @ 18" oc | $\begin{aligned} & \text { 570-plf } \\ & \hline 178 \text { p } \end{aligned}$ | 820 -plf 669-plf |
| P2-4 | 2 SIDES | 4"oc | 3 x | (2)2x | 3 x | (2) Rows, 4" oc | $\begin{aligned} & \text { A35@ 18" oc } \\ & \text { LTP4@ } 18^{\prime \prime} \text { oc } \end{aligned}$ | 5/" ${ }^{\text {¢ }}$ @ 28" oc | MASAP @ 15" oc | 700-plf 568-plf | 700-plf 568 -plf |
| P2-3 | 2 SIDES | $3{ }^{\text {" oc }}$ | 3 x | (2)2x | 3 x | (2) Rows, 3" oc | $\begin{aligned} & \text { A35 @ 14" oc } \\ & \text { LTP4 @ } 14^{\prime \prime} \text { oc } \end{aligned}$ | 5"'Ø @ 22" oc | MASAP @ 11" oc | $\begin{gathered} 900-\mathrm{plf} \\ \\ \hline 33 \text {-pf } \end{gathered}$ | $\begin{aligned} & 900 \text {-ppf } \\ & 933 \text { pf } \end{aligned}$ |
| P2-2 | 2 SIDES | $2{ }^{\text {" oc }}$ | 3 x | (2)2x | 3 x | (2) Rows, 2" oc | $\begin{aligned} & \text { A35 @ 8" oc } \\ & \text { LTP4@ }{ }^{\text {and }} 8 \mathrm{con} \end{aligned}$ | 5/" ${ }^{\text {¢ @ 12" oc }}$ | MASAP @ 7" oc | $\underset{\substack{\text { 1180-plf } \\ 957-\text { plf }}}{ }$ | $\begin{aligned} & 1640-\text { plf } \\ & 1338 \text {-plf } \end{aligned}$ |

$\frac{\text { SHEAR WALL SCHEDULE NOTES }}{\text { (SECTION 4.3.7.1.1) }}$
 AT BOUNDARIES AND CHANGES IN FRAMING. ALL EDGES OF ALL PANELS SHALL BE SUPPORTED BY AND FASTENED TO FRAMING MEMBERS OR BLOCKING.
(2) (SECTION 4.3.7.1.2. \& SECTION 4.3.7.1.3)

解 TUD SPACING SHALL BE $16 " 0$. SHEATHING NAILS SHALL BE $0.131 " \varnothing \times 21 / 2$ ". PLYWOOD EDGE NAILING SHALL BE STAGGERED. NAILS SHALL BE LOCATED AT LEAST $3 / 8$ "

(3) (SECTION 4.3.7.1.4)

THE MINIMUM NOMINAL WIDTH OF THE NAILED FACE OF FRAMING AND BLOCKING AT ADJOINING PANEL EDGES SHALL BE AS INDICATED IN THE SCHEDULE.

(4) FACE NAILING APPLIES TO CONDITIONS WHERE FRAMING NAILS CAN BE STRAIGHT DRIVEN THRU FIRST MEMBER AND PENETRATE MAIN MEMBER MINIMUM OF 1 1/2". FRAMING NAILS SHALL BE 0.131 " $\varnothing \times 3 y_{4}$ ". $0.131 " \varnothing \times 3$ " NAILS MAY BE USED WHEN STITCHING TOGETHER ( 2 ) $2 \times$ MEMBERS WITH NO SPACERS.
(5) AT ADJOINING PANEL EDGES WHERE SHEATHING CANNOT LAP ON SINGLE MEMBER AND FACE NAILING CANNOT BE ACCOMPLISHED, FRAMING CLIPS SHALL BE USED TO FASTEN BUILT-UP MEMBERS. USE $0.131 " \varnothing \times 2 \not / 2$ " NAILS AT LTP4 CLIP WHEN INSTALLED OVER $\not \mathscr{V}^{\prime \prime}$ SHEATHING.


LAP RIM OPTION


LAP PLATE OPTION


A35 OPTION


LTP4 OPTION
(6) (SECTION 4.3.6.4.4)

ANCHOR BOLTS EMBEDMENT SHALL BE 7 ", U.O.N. ALL ANCHORS SHALL HAVE $3^{\prime \prime} \times 3^{\prime \prime} \times 0.229 "$ PLATE WASHERS. PLATE WASHER SHALL EXTEND TO WITHIN $Y_{2}$ OF THE EDGE OF THE BOTTOM PLATE ON THE SIDE WITH SHEATHING. IF SHEATHING IS ON BOTH SIDES OF THE WALL, STAGGER THE ANCHOR BOLTS, AS REQUIRED, SO THAT
HALF OF THE PLATE WASHERS ARE WITHIN $\nless "$ OF THE EDGE OF THE BOTTOM PLATE ON EACH SIDE. HOLE IN PLATE WASHERS MAY BE DIAGONALLY SLOTTED.


19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436

## Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$$
\left[f_{\mathrm{c}} / F_{\mathrm{c}}^{\prime}\right]^{2}+\mathrm{f}_{\mathrm{b}} / F_{\mathrm{b}}^{\prime}\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cE}}\right)\right]<1 \quad \text { in which: } \mathrm{F}_{\mathrm{cE}}=0.822\left(\mathrm{Emin}^{\prime}\right) /\left(\mathrm{e}_{\mathrm{e}} / \mathrm{d}\right)^{2}
$$




| PLATE CRUSHING CHECK |  |  |  |
| :--- | :--- | :--- | :--- |
| Checks Crushing for Stud Spacing |  |  |  |
|  |  |  |  |
| No Stress Increase for Load Duration |  |  |  |
| Hem Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c},}{ }^{\prime}=$ | $0.87<1$ |  |
| Douglas Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=$ | $0.56<1$ | OK |

${ }^{1}$ Plate must also be checked for bending.
${ }^{2}$ Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.
Also, no stress increase is allowed due to load duration.

Date: $1 / 27 / 2021$
Page: $\qquad$

## Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$$
\left[f_{\mathrm{c}} / F_{\mathrm{c}}^{\prime}\right]^{2}+\mathrm{f}_{\mathrm{b}} / F_{\mathrm{b}}^{\prime}\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cE}}\right)\right]<1 \quad \text { in which: } \mathrm{F}_{\mathrm{cE}}=0.822\left(\mathrm{Emin}^{\prime}\right) /\left({ }_{\mathrm{e}} / \mathrm{d}\right)^{2}
$$

| Wall: Exterior Walls |  | Wall Height: | 19.25 ft |
| :---: | :---: | :---: | :---: |
|  |  | Desired Stud Spacing: | 16 in oc |
| No Fire Ratiny | $\nabla$ | Design Axial Dead Load: | 323 plf |
| (2) $2 \times 6$ | $\checkmark$ | Design Axial Live Load: | 0 plf |
| SPF Slud | $\checkmark$ | Design Axial Snow Load: | 538 plf |
|  |  | Design Lateral Pressure (0.6W): | 15 psf |
|  |  | Deflection Criteria: | 180 |



| PLATE CRUSHING CHECK' |  |  |  |
| :--- | :--- | :--- | :--- |
| Checks Crushing for Stud Spacing |  |  |  |
| No Stress Increase for Load Duration |  |  |  |
| Hem Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c},}{ }^{\prime}=$ | $0.13<1$ |  |
| Douglas Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=$ | $0.08<1$ | OK |

${ }^{1}$ Plate must also be checked for bending.
${ }^{2}$ Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.
Also, no stress increase is allowed due to load duration.

Date: 1/27/2021
Page: $\qquad$

## Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$$
\left[f_{\mathrm{c}} / F_{\mathrm{c}}^{\prime}\right]^{2}+\mathrm{f}_{\mathrm{b}} / F_{\mathrm{b}}^{\prime}\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cE}}\right)\right]<1 \quad \text { in which: } \mathrm{F}_{\mathrm{cE}}=0.822\left(\mathrm{Emin}^{\prime}\right) /\left({ }_{\mathrm{e}} / \mathrm{d}\right)^{2}
$$

| Wall: Interior Walls |  | Wall Height: |  | 9 ft |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Desired Stud Spacing: |  | 24 in oc |
| Nu Fire Rating | $\nabla$ | Design Axial Dead Load: |  | 203 plf |
| 2×4 | $\checkmark$ | Design Axial Live Load: |  | 540 plf |
| SPF Slud | $\nabla$ | Design Axial Snow Load: |  | 0 plf |
|  |  | Design Lateral Pressure (0.6W): |  | 5 psf |
|  |  | Deflection Criteria: | L | 180 |



| PLATE CRUSHING CHECK' |  |  |  |
| :--- | :--- | :--- | :--- |
| Checks Crushing for Stud Spacing |  |  |  |
| No Stress Increase for Load Duration |  |  |  |
| Hem Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c},}{ }^{\prime}=$ | $0.46<1$ |  |
| Douglas Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=$ | $0.30<1$ | OK |

${ }^{1}$ Plate must also be checked for bending.
${ }^{2}$ Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.
Also, no stress increase is allowed due to load duration.

Date: 1/27/2021
Page: $\qquad$

## Stud Wall Design

Based on 2018 NDS Combined axial and bending formula:

$$
\left[f_{\mathrm{c}} / F_{\mathrm{c}}^{\prime}\right]^{2}+\mathrm{f}_{\mathrm{b}} / F_{\mathrm{b}}^{\prime}\left[1-\left(\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{cE}}\right)\right]<1 \quad \text { in which: } \mathrm{F}_{\mathrm{cE}}=0.822\left(\mathrm{Emin}^{\prime}\right) /\left({ }_{\mathrm{e}} / \mathrm{d}\right)^{2}
$$

| Wall: Interior Walls |  | Wall Height: |  | 9 ft |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Desired Stud Spacing: |  | 16 in oc |
| Nu Fire Rating | $\nabla$ | Design Axial Dead Load: |  | 338 plf |
| $2 \times 4$ | $\checkmark$ | Design Axial Live Load: |  | 900 plf |
| SPF Slud | $\nabla$ | Design Axial Snow Load: |  | 0 plf |
|  |  | Design Lateral Pressure (0.6W): |  | 5 psf |
|  |  | Deflection Criteria: | L | 180 |



| PLATE CRUSHING CHECK |  |  |  |
| :--- | :--- | :--- | :--- |
| Checks Crushing for Stud Spacing |  |  |  |
|  |  |  |  |
| No Stress Increase for Load Duration |  |  |  |
| Hem Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c},}{ }^{\prime}=$ | $0.51<1$ |  |
| Douglas Fir Plates: | $\mathrm{f}_{\mathrm{c}} / \mathrm{F}_{\mathrm{c} \perp}{ }^{\prime}=$ | $0.33<1$ | OK |

${ }^{1}$ Plate must also be checked for bending.
${ }^{2}$ Check on crushing only applies to stud spacing. Joists above must also be checked for crushing effect on plate.
Also, no stress increase is allowed due to load duration.

Date: $1 / 27 / 2021$
Page: $\qquad$

## 2018 NDS

3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS

| Solid Column | $\nabla$ | $F_{c}=$ | 800 psi | $\mathrm{E}_{\text {min }}=$ | 440 ksi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Visually graded lumber (Dimensional) | $\nabla$ | $C_{D}=$ | 1.00 | $\mathrm{E}_{\text {min }}{ }^{\prime}=$ | 440 ksi |
| No Fire Rating | $\nabla$ | $C_{M}=$ | 1.00 | $1=$ | 9.0 ft |
| Hem-Fir Stud | $\nabla$ | $C_{t}=$ | 1.00 | $\mathrm{d}=$ | $51 / 2$ in |
|  |  | $C_{F}=$ | 1.00 | $\mathrm{K}_{\mathrm{e}}=$ | 1.0 |
|  |  |  |  | $1_{\mathrm{e}}=$ | 108.0 in |
| $F_{c}{ }^{\prime}=F_{c}{ }^{*} C_{P}$ |  |  |  | $l_{e} / \mathrm{d}=$ | 19.6 |

$\begin{aligned} & F_{c}{ }^{*}=F_{c} C_{D} C_{M} C_{t} C_{F} \\ & F_{c}{ }^{*}=800 \mathrm{psi} \\ & C_{p}=0.743 \\ & 594 \mathrm{psi}\end{aligned} \quad C_{p}=K_{f}\left[\frac{1+\left(F_{c E} / F_{c}{ }^{*}\right)}{2 c}-\sqrt{\left.\left[\frac{1+\left(F_{c E} / F_{c}{ }^{*}\right)}{2 c}\right]^{2}-\frac{F_{c E} / F_{c}}{c}\right]}\right.$

$$
\begin{aligned}
F_{c E} & =938 \\
c & =0.8 \\
K_{f} & =1.0
\end{aligned} \quad F_{c E}=\frac{0.822 E \text { min' }^{\prime}}{\left(l_{e} / d\right)^{2}}
$$

|  | STUD | HF Plate Crushing | DF Plate Crushing |
| :--- | :---: | :---: | :---: |
| (1) $2 \times 6$ | 4904 | 3341 | 5156 |
| (2) $2 \times 6$ | 9807 | 6683 | 10313 |
| (3) $2 \times 6$ | 14711 | 10024 | 15469 |
| (4) $2 \times 6$ | 19614 | 13365 | 20625 |
| (5) $2 \times 6$ | 24518 | 16706 | 25781 |

## 2018 NDS

3.7-SOLID COLUMNS and 15.3-BUILT-UP COLUMNS

| Solid Column | $\square$ | $F_{c}=$ | 800 psi | $\mathrm{E}_{\text {min }}=$ | 440 ksi |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Visually graded lumber (Dimensional) | $\nabla$ | $C_{D}=$ | 1.00 | $\mathrm{E}_{\text {min }}{ }^{\prime}=$ | 440 ksi |
| No Fire Rating | $\nabla$ | $C_{M}=$ | 1.00 | $1=$ | 9.0 ft |
| Hem-Fir Stud | $\nabla$ | $C_{t}=$ | 1.00 | $\mathrm{d}=$ | $31 / 2$ in |
|  |  | $C_{F}=$ | 1.00 | $\mathrm{K}_{\mathrm{e}}=$ | 1.0 |
|  |  |  |  | $1_{\text {e }}=$ | 108.0 in |
| $F_{c}{ }^{\prime}=F_{c}{ }^{*} C_{P}$ |  |  |  | $1_{e} / \mathrm{d}=$ | 30.9 |
| $\begin{aligned} F_{c}{ }^{*} & =F_{c} C_{D} C_{M} C_{t} \\ F_{c}{ }^{*} & =800 \mathrm{psi} \\ C_{p} & =0.416 \end{aligned}$ |  |  | $=K_{f}\left[\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}-\sqrt{\left[\frac{1+\left(F_{c E} / F_{c}^{*}\right)}{2 c}\right]^{2}} .\right.$ |  |  |
| $F_{c}{ }^{\prime}=333 \mathrm{psi}$ |  |  |  |  |  |

$$
\begin{aligned}
F_{c E} & =380 \\
c & =0.8 \\
K_{f} & =1.0
\end{aligned} \quad F_{c E}=\frac{0.822 E \text { min' }}{\left(l_{e} / d\right)^{2}}
$$

| $\underline{\text { STUD }}$ | HF Plate Crushing | DF Plate Crushing |
| :---: | :---: | :---: |
| 1746 | 2126 | 3281 |
| 3492 | 4253 | 6563 |
| 5237 | 6379 | 9844 |
| 6983 | 8505 | 13125 |
| 8729 | 10631 | 16406 |

19011 Wood-Sno Road NE, Suite 100
Woodinville, WA 98072-4436
Phone: 425-814-8448
ENGINEERING

Project: Continuous Strip Footing 18 " wide x 8 " thick

Footing width, $B=$
Footing Thickness, $t=$
Stem Wall width, $C=$
Stem Wall Height =

IBC Section 13.3.2: One-way shallow foundations

|  |  |
| ---: | :--- |
| 18 | in |
| 8 | in |
| 8 | in |
| 24 | in |



Longintudinal Reinforcement:

Stem Wall Reinforcement:


Footing + Stem Wall Weight - Weight of Displaced Soil $=$

One-way shear, no shear reinforcement:
[22.5.5.1] $\quad V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} b_{w} d=$
5700 \# per foot length
$\phi=$
0.75
[22.5.10.1] $V_{u} \leq \phi V_{c}$

$$
\begin{array}{cc}
V_{u}=q_{u} b_{w}\left(\frac{B-C}{2}-d\right) & \rightarrow q_{u}=\frac{\phi V_{c}}{q_{u}=} \\
& \begin{array}{l}
51300 \mathrm{psf} \\
76950 \mathrm{plf}
\end{array} \\
b_{w}\left(\frac{B-C}{2}-d\right) \\
\text { Hniform Load on Stem }= & 48094 \mathrm{plf}
\end{array}
$$

Moment:


Development of Reinforcement:

$$
\text { [25.4.2.3] } l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=\quad \mathrm{N} / \mathrm{A}
$$

| Allowable Soil Bearing Pressure | 1500 psf | 2000 psf | 2500 psf | 3000 psf | 3500 psf | 4000 psf |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Max Uniform Load, Soil | 2010 plf | 2760 plf | 3510 plf | 4260 plf | 5010 plf | 5760 plf |
| Max Uniform Load, Shear | 48094 plf |
| Max Uniform Load, Moment | 7500 plf |
| Max Uniform Load (Service) | 2010 plf | 2760 plf | 3510 plf | 4260 plf | 5010 plf | 5760 plf |
| Max Uniform Load (Ultimate) | 3216 plf | 4416 plf | 5616 plf | 6816 plf | 8016 plf | 9216 plf |
| Max Point Load (Service) | 16080 \# | 22080 \# | 28080 \# | 34080 \# | 40080 \# | 46080 \# |
| Max Point Load (Ultimate) | 25728 \# | 35328 \# | 44928 \# | 54528 \# | 64128 \# | 73728 \# |

$\qquad$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $18^{\prime \prime} \times 18^{\prime \prime} \times 8$ " thick

Footing

$$
B=1.50 \mathrm{ft}
$$

$$
t=8 \text { in }
$$

Reinforcement

$$
R=(2) \# 4 \quad \nabla
$$

$$
A_{s 1}=0.40 \mathrm{in}^{2}
$$

$$
d=4.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=3.50 \text { in } \quad C_{2}=3.50 \mathrm{in}
$$

Materials $\quad f^{\prime}{ }_{c}=2500 \mathrm{psi} \quad$ Normalweight $\quad \lambda=1.00$

$$
f_{y}=40000 \mathrm{psi} \quad \text { Uncoated } \quad \psi_{e}=1.00
$$

Net Footing Weight

$$
P_{\mathrm{FTG}}=0.06 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


One-way shear:

$$
\emptyset=0.75
$$

$$
\begin{array}{ccc}
\begin{array}{cc}
V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d= & 7.65 \mathrm{k} \\
V_{u} \leq \emptyset V_{c} \\
\emptyset V_{c}= & 5.74 \mathrm{k}
\end{array} & \\
V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) & \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} & V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)} \\
\qquad q_{u}= & 10392 \mathrm{psf} \quad \text { or } & 10392 \mathrm{psf} \quad P_{u}=q_{u} B^{2}= \\
\text { Two-way shear: } & \emptyset=0.75 &
\end{array}
$$

$$
\begin{array}{ll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} \\
{[22.6 .5 .2(\mathrm{c})] v_{c}=\left(2+\frac{\alpha_{x} d}{b_{0}}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 374 \mathrm{psi}
\end{array}
$$

$$
V_{u} \leq \phi V_{c} \quad \phi V_{c}=\phi v_{c} b_{0} d=\quad 19.76 \mathrm{k}
$$

$$
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]}
$$

Moment: $\quad \varnothing=0.90$

$$
q_{u}=10782 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=24260 \#
$$

$$
\begin{array}{cc}
M_{n}=A_{s} f_{y}(d-a / 2)= & 5.4 \mathrm{k}-\mathrm{ft} \\
a=A_{s} f_{y} /\left(0.85 f^{\prime} B\right)= & 0.42 \mathrm{in} \\
M_{u} \leq \emptyset M_{n} \quad \emptyset M_{n}= & 4.8 \mathrm{k}-\mathrm{ft}
\end{array}
$$

Development of Reinforcement:

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

4 in ... 4 in available

OK

## Soil Bearing Pressure

Max Load (lbs), Soil
Max Load (lbs), One-Way Shear Max Load (lbs), Two-Way Shear Max Load (lbs), Moment
Max Load (ASD)
Max Load (Factored)
Adjusted

| $\mathbf{1 5 0 0} \mathbf{~ p s f}$ | $\mathbf{2 0 0 0} \mathbf{~ p s f}$ | $\mathbf{2 5 0 0} \mathbf{~ p s f}$ | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 3315 | 4440 | 5565 | 6690 | 7815 | 8940 |
| 14614 | 14614 | 14614 | 14614 | 14614 | 14614 |
| 15162 | 15162 | 15162 | 15162 | 15162 | 15162 |
| 24908 | 24908 | 24908 | 24908 | 24908 | 24908 |
| $\mathbf{3 3 1 5}$ | $\mathbf{4 4 4 0}$ | $\mathbf{5 5 6 5}$ | $\mathbf{6 6 9 0}$ | $\mathbf{7 8 1 5}$ | $\mathbf{8 9 4 0}$ |
| $\mathbf{5 3 0 4}$ | $\mathbf{7 1 0 4}$ | $\mathbf{8 9 0 4}$ | $\mathbf{1 0 7 0 4}$ | $\mathbf{1 2 5 0 4}$ | $\mathbf{1 4 3 0 4}$ |

Date: $\underline{3 / 19 / 2018}$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $\quad 24^{\prime \prime} \times 24^{\prime \prime} \times 8$ " thick

Footing

$$
B=2.00 \mathrm{ft}
$$

$$
t=8 \text { in }
$$

Reinforcement

$$
R=(2) \quad \# 4 \quad \nabla
$$

$$
A_{s 1}=0.40 \mathrm{in}^{2}
$$

$$
d=4.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=3.50 \text { in } \quad C_{2}=3.50 \mathrm{in}
$$

Materials $\quad f^{\prime}{ }_{c}=2500 \mathrm{psi} \quad$ Normalweight $\quad \lambda=1.00$

$$
f_{y}=40000 \mathrm{psi} \quad \text { Uncoated } \quad \psi_{e}=1.00
$$

Net Footing Weight

$$
P_{\mathrm{FTG}}=0.11 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


One-way shear:

$$
\emptyset=0.75
$$

$$
\begin{array}{lr}
V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d= & 10.20 \mathrm{k} \\
V_{u} \leq \emptyset V_{c} \quad \emptyset V_{c}= & 7.65 \mathrm{k}
\end{array}
$$

$$
V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} \quad V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)}
$$

$$
q_{u}=5649 \mathrm{psf} \quad \text { or } \quad 5649 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=22597 \#
$$

Two-way shear: $\quad \varnothing=0.75$

$$
\begin{array}{ll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} \\
{[22.6 .5 .2(\mathrm{c})] v_{c}=\left(2+\frac{\alpha_{x} d}{b_{0}}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 374 \mathrm{psi}
\end{array}
$$

$$
V_{u} \leq \phi V_{c} \quad \phi V_{c}=\phi v_{c} b_{0} d=\quad 19.76 \mathrm{k}
$$

$$
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]}
$$

$$
\begin{array}{r}
q_{u}=5516 \mathrm{psf} \\
\emptyset=0.90
\end{array}
$$

$$
\text { Moment: } \quad \emptyset=0.90
$$

$$
\begin{array}{cc}
M_{n}=A_{s} f_{y}(d-a / 2)= & 5.5 \mathrm{k}-\mathrm{ft} \\
a=A_{s} f_{y} /\left(0.85 f^{\prime} B\right)= & 0.31 \mathrm{in} \\
{ }_{c} B M_{n}= & 4.9 \mathrm{k}-\mathrm{ft}
\end{array}
$$

Development of Reinforcement:

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

7 in ... 7 in available OK

## Soil Bearing Pressure <br> Max Load (lbs), Soil <br> Max Load (Ibs), One-Way Shear <br> Max Load (lbs), Two-Way Shear <br> Max Load (lbs), Moment <br> Max Load (ASD) <br> Max Load (Factored)

Adjusted

| $\mathbf{1 5 0 0} \mathbf{~ p s f}$ | $\mathbf{2 0 0 0} \mathbf{~ p s f}$ | $\mathbf{2 5 0 0} \mathbf{~ p s f}$ | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 5893 | 7893 | 9893 | 11893 | 13893 | 15893 |
| 14123 | 14123 | 14123 | 14123 | 14123 | 14123 |
| 13789 | 13789 | 13789 | 13789 | 13789 | 13789 |
| 16830 | 16830 | 16830 | 16830 | 16830 | 16830 |
| $\mathbf{5 8 9 3}$ | $\mathbf{7 8 9 3}$ | $\mathbf{9 8 9 3}$ | $\mathbf{1 1 8 9 3}$ | $\mathbf{1 2 7 1 0}$ | $\mathbf{1 2 7 1 0}$ |
| $\mathbf{9 4 2 9}$ | $\mathbf{1 2 6 2 9}$ | $\mathbf{1 5 8 2 9}$ | $\mathbf{1 9 0 2 9}$ | $\mathbf{2 0 3 3 7}$ | $\mathbf{2 0 3 3 7}$ |

Date: $3 / 19 / 2018$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $\quad 30 " \times 30 " \times 8$ " thick

Footing

$$
B=2.50 \mathrm{ft}
$$

$$
t=8 \text { in }
$$

Reinforcement

$$
R=(3) \# 4 \quad \nabla
$$

$$
A_{s 1}=0.60 \mathrm{in}^{2}
$$

$$
d=4.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=3.50 \text { in } \quad C_{2}=3.50 \mathrm{in}
$$

Materials $\quad f^{\prime}{ }_{c}=2500 \mathrm{psi} \quad$ Normalweight $\quad \lambda=1.00$

$$
f_{y}=40000 \mathrm{psi} \quad \text { Uncoated } \quad \psi_{e}=1.00
$$

Net Footing Weight

$$
P_{\mathrm{FTG}}=0.17 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


One-way shear:

$$
\emptyset=0.75
$$

$$
\begin{array}{lll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} & \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} & \begin{array}{l}
\beta=1.00 \\
\alpha_{\mathrm{x}}
\end{array}=40 \\
{[22.6 .5 .2(\mathrm{c})] v_{c}=\left(2+\frac{\alpha_{x} d}{b_{0}}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 374 \mathrm{psi} & b_{0}=2\left(\mathrm{C}_{1}+\mathrm{d}\right)+2\left(\mathrm{C}_{2}+\mathrm{d}\right)
\end{array}
$$

19.76 k

$$
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]}
$$

$$
q_{u}=3388 \mathrm{psf}
$$

$$
P_{u}=q_{u} B^{2}=21176 \#
$$

Moment: $\quad \varnothing=0.90$

$$
\left.\begin{array}{cc}
M_{n}=A_{s} f_{y}(d-a / 2)= & 8.1 \mathrm{k}-\mathrm{ft} \\
a=A_{s} f_{y} /\left(0.85 f^{\prime}{ }_{c} B\right)= & 0.38 \mathrm{in} \\
M_{u} \leq \emptyset M_{n} \quad \emptyset M_{n}= & 7.3 \mathrm{k}-\mathrm{ft}
\end{array}\right] \begin{array}{cc}
M_{u}=\frac{q_{u} B\left(\frac{B-C_{2}}{2}\right)^{2}}{2} \rightarrow & q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{2}\right) / 2\right)^{2}} \\
q_{u}= & 4797 \mathrm{psf} \quad \text { or }
\end{array}
$$

$$
\begin{aligned}
& M_{u}=\frac{q_{u} B\left(\frac{B-C_{1}}{2}\right)^{2}}{2} \rightarrow q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{1}\right) / 2\right)^{2}} \\
& 4797 \mathrm{psf} P_{u}=q_{u} B^{2} \\
& 29984 \#
\end{aligned}
$$

Development of Reinforcement:

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

## Soil Bearing Pressure

Max Load (lbs), Soil
Max Load (lbs), One-Way Shear
Max Load (lbs), Two-Way Shear
Max Load (lbs), Moment
Max Load (ASD)
Max Load (Factored)

| $\mathbf{1 5 0 0} \mathbf{~ p s f}$ | $\mathbf{2 0 0 0} \mathbf{~ p s f}$ | $\mathbf{2 5 0 0} \mathbf{~ p s f}$ | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{9 2 0 8}$ | 12333 | 15458 | 18583 | 21708 | 24833 |
| 15524 | 15524 | 15524 | 15524 | 15524 | 15524 |
| 13235 | 13235 | 13235 | 13235 | 13235 | 13235 |
| 18740 | 18740 | 18740 | 18740 | 18740 | 18740 |
| $\mathbf{9 2 0 8}$ | $\mathbf{1 2 3 3 3}$ | $\mathbf{1 3 2 3 5}$ |
| $\mathbf{1 4 7 3 3}$ | $\mathbf{1 9 7 3 3}$ | $\mathbf{2 1 1 7 6}$ |

Date: 3/19/2018

$$
\begin{aligned}
& V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d=\quad 12.75 \mathrm{k} \\
& V_{u} \leq \emptyset V_{c} \quad \emptyset V_{c}=\quad 9.56 \mathrm{k} \\
& V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} \quad V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)} \\
& q_{u}=3974 \mathrm{psf} \quad \text { or } \quad 3974 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=24838 \# \\
& \text { Two-way shear: } \quad \varnothing=0.75
\end{aligned}
$$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $\quad 36 " \times 36 " \times 12$ " thick

Footing

$$
B=3.00 \mathrm{ft}
$$

Reinforcement

$$
\begin{aligned}
t & =12 \text { in } \\
R & =(3) \quad \# 4 \quad \nabla
\end{aligned}
$$

$$
A_{s 1}=0.60 \mathrm{in}^{2}
$$

$$
d=8.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=5.50 \text { in } \quad C_{2}=5.50 \mathrm{in}
$$

Materials $\quad f^{\prime}{ }_{c}=2500 \mathrm{psi} \quad$ Normalweight $\quad \lambda=1.00$

$$
f_{y}=40000 \mathrm{psi} \quad \text { Uncoated } \quad \psi_{e}=1.00
$$

Net Footing Weight

$$
P_{\text {FTG }}=0.36 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


One-way shear:

$$
\emptyset=0.75
$$

$$
\begin{array}{rcc}
V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d= & 29.70 \mathrm{k} \\
V_{u} \leq \emptyset V_{c} \quad \emptyset V_{c}= & 22.28 \mathrm{k} \\
V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) & \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} & V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)} \\
q_{u}= & 7128 \mathrm{psf} \text { or } & 7128 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=
\end{array}
$$

Two-way shear: $\quad \varnothing=0.75$

$$
\begin{array}{lll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} & \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} & \begin{array}{l}
\beta=1.00 \\
\alpha_{\mathrm{x}}
\end{array}=40
\end{array}
$$

$$
V_{u} \leq \phi V_{c}
$$

$$
\phi V_{c}=\phi v_{c} b_{0} d=
$$

$$
68.06 \text { k }
$$

$$
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]}
$$

$$
q_{u}=8854 \mathrm{psf}
$$

$$
P_{u}=q_{u} B^{2}=79687 \#
$$

Moment: $\quad \emptyset=0.90$

$$
\begin{array}{cc}
M_{n}=A_{s} f_{y}(d-a / 2)= & 16.2 \mathrm{k}-\mathrm{ft} \\
a=A_{s} f_{y} /\left(0.85 f^{\prime}{ }_{c} B\right)= & 0.31 \mathrm{in} \\
M_{u} \leq \emptyset M_{n} \quad \emptyset M_{n}= & 14.6 \mathrm{k}-\mathrm{ft} \\
M_{u}=\frac{q_{u} B\left(\frac{B-C_{2}}{2}\right)^{2}}{2} \rightarrow & q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{2}\right) / 2\right)^{2}} \\
q_{u}= & 6013 \mathrm{psf} \quad \text { or }
\end{array}
$$

$$
\begin{aligned}
& M_{u}=\frac{q_{u} B\left(\frac{B-C_{1}}{2}\right)^{2}}{2} \rightarrow q_{u} \\
&=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{1}\right) / 2\right)^{2}} \\
& 6013 \mathrm{psf} P_{u}=q_{u} B^{2}= \\
& 54121 \#
\end{aligned}
$$

Development of Reinforcement:

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

## Soil Bearing Pressure

Max Load (lbs), Soil
Max Load (lbs), One-Way Shear
Max Load (lbs), Two-Way Shear
Max Load (lbs), Moment
Max Load (ASD)
Max Load (Factored)

12 in

| $\mathbf{1 5 0 0}$ psf | $\mathbf{2 0 0 0} \mathbf{\text { psf }}$ | $\mathbf{2 5 0 0} \mathbf{~ p s f}$ | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 13140 | 17640 | 22140 | 26640 | 31140 | 35640 |
| 40095 | 40095 | 40095 | 40095 | 40095 | 40095 |
| 49805 | 49805 | 49805 | 49805 | 49805 | 49805 |
| 33825 | 33825 | 33825 | 33825 | 33825 | 33825 |
| $\mathbf{1 3 1 4 0}$ | $\mathbf{1 7 6 4 0}$ | $\mathbf{2 2 1 4 0}$ | $\mathbf{2 6 6 4 0}$ | $\mathbf{3 1 1 4 0}$ | $\mathbf{3 3 8 2 5}$ |
| $\mathbf{2 1 0 2 4}$ | $\mathbf{2 8 2 2 4}$ | $\mathbf{3 5 4 2 4}$ | $\mathbf{4 2 6 2 4}$ | $\mathbf{4 9 8 2 4}$ | $\mathbf{5 4 1 2 1}$ |

Date: $\underline{3 / 19 / 2018}$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $\quad 42^{\prime \prime} \times 42^{\prime \prime} \times 12^{\prime \prime}$ thick

Footing

$$
B=3.50 \mathrm{ft}
$$

Reinforcement

$$
\begin{aligned}
t & =12 \text { in } \\
R & =(4) \quad \# 4 \quad \nabla
\end{aligned}
$$

$$
A_{s 1}=0.80 \mathrm{in}^{2}
$$

$$
d=8.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=5.50 \text { in } \quad C_{2}=5.50 \mathrm{in}
$$

Materials

$$
\begin{aligned}
f_{c}^{\prime} & =2500 \mathrm{psi} & \text { Normalweight } & \bullet
\end{aligned} \begin{aligned}
& =1.00 \\
f_{y} & =40000 \mathrm{psi} \\
\text { Uncoated } & \text { Ə }
\end{aligned} \psi_{e}=1.00
$$

Net Footing Weight

$$
P_{\mathrm{FTG}}=0.49 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


$$
\begin{array}{lll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} & \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} & \begin{array}{l}
\beta=1.00 \\
\alpha_{\mathrm{x}}
\end{array}=40 \\
{[22.6 .5 .2(\mathrm{c})] v_{c}=\left(2+\frac{\alpha_{x} d}{b_{0}}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 400 \mathrm{psi} & b_{0}=2\left(\mathrm{C}_{1}+\mathrm{d}\right)+2\left(\mathrm{C}_{2}+\mathrm{d}\right)
\end{array}
$$

$$
V_{u} \leq \phi V_{c}
$$

$$
\phi V_{c}=\phi v_{c} b_{0} d=
$$

68.06 k

$$
\begin{array}{cc}
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]} \\
q_{u}=\quad 6223 \mathrm{psf} & P_{u}=q_{u} B^{2}=\quad 76233 \#
\end{array}
$$

$$
\begin{aligned}
& q_{u}= 6223 \mathrm{psf} \\
& \emptyset=0.90
\end{aligned}
$$

$$
\begin{array}{r}
\text { Moment: } \\
\qquad \begin{array}{r}
M_{n}=A_{s} f_{y}(d-a / 2)=0.90 \\
a=A_{s} f_{y} /\left(0.85 f^{\prime}{ }_{c} B\right)= \\
21.5 \mathrm{k}-\mathrm{ft} \\
M_{u} \leq \emptyset M_{n} \quad \quad 0.36 \mathrm{in} \\
M_{u}=\frac{q_{u} B\left(\frac{B-C_{2}}{2}\right)^{2}}{2} \rightarrow \\
19.4 \mathrm{k}-\mathrm{ft} \\
q_{u}=
\end{array} q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{2}\right) / 2\right)^{2}}
\end{array}
$$

Development of Reinforcement:
路

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

12 in

$$
\begin{aligned}
& M_{u}=\frac{q_{u} B\left(\frac{B-C_{1}}{2}\right)^{2}}{2} \rightarrow q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{1}\right) / 2\right)^{2}} \\
& 4785 \mathrm{psf} P_{u}=q_{u} B^{2}=\frac{58622 \#}{\#}
\end{aligned}
$$

Soil Bearing Pressure
Max Load (lbs), Soil
Max Load (lbs), One-Way Shear
Max Load (lbs), Two-Way Shear
Max Load (lbs), Moment
Max Load (ASD)
Max Load (Factored)
1500 psf
17885
42923
47646
36639
17885
28616
... 15 in available OK

| $\mathbf{2 0 0 0} \mathbf{~ p s f}$ | $\mathbf{2 5 0 0}$ psf | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2 4 0 1 0}$ | 30135 | 36260 | 42385 | 48510 |
| 42923 | 42923 | 42923 | 42923 | 42923 |
| 47646 | 47646 | 47646 | 47646 | 47646 |
| 36639 | 36639 | 36639 | 36639 | 36639 |
| $\mathbf{2 4 0 1 0}$ | $\mathbf{3 0 1 3 5}$ | $\mathbf{3 6 2 6 0}$ | $\mathbf{3 6 6 3 9}$ | $\mathbf{3 6 6 3 9}$ |
| $\mathbf{3 8 4 1 6}$ | $\mathbf{4 8 2 1 6}$ | $\mathbf{5 8 0 1 6}$ | $\mathbf{5 8 6 2 2}$ | $\mathbf{5 8 6 2 2}$ |

Date: $\underline{3 / 19 / 2018}$

$$
\begin{aligned}
& \text { One-way shear: } \\
& \varnothing=0.75 \\
& V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d=\quad 34.65 \mathrm{k} \\
& V_{u} \leq \emptyset V_{c} \quad \emptyset V_{c}=25.99 \mathrm{k} \\
& V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} \quad V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)} \\
& q_{u}=5606 \mathrm{psf} \quad \text { or } \quad 5606 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=68677 \# \\
& \text { Two-way shear: } \quad \varnothing=0.75
\end{aligned}
$$

19011 Wood-Sno Road NE, Suite 100

Project: Typical Footing
Footing: $\quad 48 " \times 48 " \times 12 "$ thick

Footing

$$
B=4.00 \mathrm{ft}
$$

$$
t=12 \text { in }
$$

Reinforcement

$$
R=(5) \quad \# 4 \quad \nabla
$$

$$
A_{s 1}=1.00 \mathrm{in}^{2}
$$

$$
d=8.25 \text { in } \quad \text { Cover: } 3 \text { in }
$$

Column

$$
C_{1}=5.50 \text { in } \quad C_{2}=5.50 \mathrm{in}
$$

Materials

$$
\begin{aligned}
f_{c}^{\prime} & =2500 \mathrm{psi} & \text { Normalweight } & \bullet
\end{aligned} \begin{aligned}
& =1.00 \\
f_{y} & =40000 \mathrm{psi} \\
\text { Uncoated } & \text { Ə }
\end{aligned} \psi_{e}=1.00
$$

Net Footing Weight

$$
\mathrm{P}_{\mathrm{FTG}}=0.64 \mathrm{k}
$$

Soil Pressure:

$$
P_{A S D}=q_{a} B^{2}-P_{F T G}=
$$



Isolated footing


One-way shear: $\quad \emptyset=0.75$

$$
\begin{array}{ccc}
V_{c}=2 \lambda \sqrt{f_{c}^{\prime}} B d= & 39.60 \mathrm{k} \\
V_{u} \leq \emptyset V_{c} \quad \emptyset V_{c}= & 29.70 \mathrm{k} \\
V_{u}=q_{u} B\left(\frac{B-C_{2}}{2}-d\right) & \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{2}}{2}-d\right)} & V_{u}=q_{u} B\left(\frac{B-C_{1}}{2}-d\right) \rightarrow q_{u}=\frac{\emptyset V_{c}}{B\left(\frac{B-C_{1}}{2}-d\right)} \\
& q_{u}= & 4644 \mathrm{psf} \text { or }
\end{array} \quad 4644 \mathrm{psf} \quad P_{u}=q_{u} B^{2}=\begin{aligned}
& 7298 \#
\end{aligned}
$$

$$
\begin{array}{lll}
{[22.6 .5 .2(\mathrm{a})] v_{c}=4 \lambda \sqrt{f_{c}^{\prime}}=} & 200 \mathrm{psi} & \\
{[22.6 .5 .2(\mathrm{~b})] v_{c}=\left(2+\frac{4}{\beta}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 300 \mathrm{psi} & \begin{array}{l}
\beta=1.00 \\
\alpha_{\mathrm{x}}
\end{array}=40 \\
{[22.6 .5 .2(\mathrm{c})] v_{c}=\left(2+\frac{\alpha_{x} d}{b_{0}}\right) \lambda \sqrt{f_{c}^{\prime}}=} & 400 \mathrm{psi} & b_{0}=2\left(\mathrm{C}_{1}+\mathrm{d}\right)+2\left(\mathrm{C}_{2}+\mathrm{d}\right)
\end{array}
$$

$$
V_{u} \leq \phi V_{c}
$$

$$
\phi V_{c}=\phi v_{c} b_{0} d=
$$

68.06 k

$$
V_{u}=q_{u}\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right] \rightarrow q_{u}=\frac{\emptyset V_{c}}{\left[B^{2}-\left(C_{1}+d\right)\left(C_{2}+d\right)\right]}
$$

$$
\begin{aligned}
& q_{u}=\quad 4634 \mathrm{psf} \\
& \emptyset=0.90
\end{aligned}
$$

Moment: $\quad \varnothing=0.90$

$$
\begin{array}{cr}
M_{n}=A_{s} f_{y}(d-a / 2)= & 26.8 \mathrm{k}-\mathrm{ft} \\
a=A_{s} f_{y} /\left(0.85 f^{\prime}{ }_{c} B\right)= & 0.39 \mathrm{in} \\
M_{u} \leq \emptyset M_{n} \quad \emptyset M_{n}= & 24.2 \mathrm{k}-\mathrm{ft} \\
M_{u}=\frac{q_{u} B\left(\frac{B-C_{2}}{2}\right)^{2}}{2} \rightarrow & q_{u}=\frac{2 \emptyset M_{n}}{B\left(\left(B-C_{2}\right) / 2\right)^{2}} \\
q_{u}=\quad 3853 \mathrm{psf} \quad \text { or }
\end{array}
$$

Development of Reinforcement:

$$
l_{d}=\left(\frac{3}{40} \frac{f_{y}}{\lambda \sqrt{f_{c}^{\prime}}} \frac{\psi_{t} \psi_{e} \psi_{s}}{\left(\frac{c_{b}+K_{t r}}{d_{b}}\right)}\right) d_{b}=
$$

12 in
... 18 in available OK

## Soil Bearing Pressure

Max Load (lbs), Soil
Max Load (Ibs), One-Way Shear
Max Load (lbs), Two-Way Shear
Max Load (lbs), Moment
Max Load (ASD)
Max Load (Factored)

| $\mathbf{1 5 0 0} \mathbf{~ p s f}$ | $\mathbf{2 0 0 0} \mathbf{p s f}$ | $\mathbf{2 5 0 0} \mathbf{~ p s f}$ | $\mathbf{3 0 0 0} \mathbf{~ p s f}$ | $\mathbf{3 5 0 0} \mathbf{~ p s f}$ | $\mathbf{4 0 0 0} \mathbf{~ p s f}$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2 3 3 6 0}$ | 31360 | 39360 | 47360 | 55360 | 63360 |
| 46436 | 46436 | 46436 | 46436 | 46436 | 46436 |
| 46342 | 46342 | 46342 | 46342 | 46342 | 46342 |
| 38525 | 38525 | 38525 | 38525 | 38525 | 38525 |
| $\mathbf{2 3 3 6 0}$ | $\mathbf{3 1 3 6 0}$ | $\mathbf{3 8 5 2 5}$ |
| $\mathbf{3 7 3 7 6}$ | $\mathbf{5 0 1 7 6}$ | $\mathbf{6 1 6 4 0}$ |

Date: 3/19/2018


[^0]:    Weyerhaeuser Notes
    Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

    The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

[^1]:    - Refer to manufacturer notes and instructions for proper installation and use of all connectors.

[^2]:    - Refer to manufacturer notes and instructions for proper installation and use of all connectors.

